
Replace this file withprentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at theENTCS Macro Home Page.

Leveraging UML Profiles to generate Plugins
from Visual Model Transformations

Hans Schippers∗, Pieter Van Gorp, Dirk Janssens

Formal Techniques in Software Engineering
Universiteit Antwerpen, Belgium

{hans.schippers,pieter.vangorp,dirk.janssens}@ua.ac.be
∗Research Assistant of the Research Foundation - Flanders (FWO - Vlaanderen)

Abstract

Model transformation is a fundamental technology in the MDA. Therefore, model trans-
formations should be treated as first class entities, that is, models. One could use the
metamodel of SDM, a graph based object transformation language, as the metamodel of
such transformation models. However, there are two problems associated with this. First,
SDM has a non-standardized metamodel, meaning a specific tool (Fujaba) would be needed
to write transformation specifications. Secondly, due to assumptions of the code genera-
tor, the transformations could only be deployed on the Fujaba tool itself. In this paper,
we describe how these issues have been overcome through the development of a template
based code generator that translates instances of a UML profile for SDM to complete model
transformation code that complies to the JMI standard. We have validated this approach by
specifying a simple visual refactoring in one UML tool and deploying the generated plugin
on another UML tool.

Key words: Refactoring, Model Transformation, SDM, JMI

1 Introduction

As Sendall and Kozaczynski state [SK03], model transformation can be seen as the
heart and soulof model driven software development. In terms of OMG’s Model
Driven Architecture (MDA [Obj01]), PIM-to-PSM transformations come to mind
immediately, but that is only half the story. Indeed, beside theserefinements(a
special kind oftranslations), there is another important class of model transforma-
tions: rephrasings[Gor04]. These are transformations within the same metamodel
(intra-metamodel), which could be applied to change a model because of evolv-
ing requirements, or to enhance a model’s internal structure without modifying
its external behavior (refactoring). Recent experiments [GEJ03] have shown that
Fujaba’s Story Driven Modeling (SDM [FNTZ98]) can be used as a language for
developing transformations of this class.

c©2004 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs


Schippers, Van Gorp and Janssens

However, one was restricted to Fujaba as its development environment for two
reasons. The first has to do with the fact that SDM is an independent, non-standard
metamodel, and is only implicitly present in the Fujaba source code. Therefore,
SDM specifications could only be written with the Fujaba editor. The second prob-
lem is that model transformations developed with Fujaba can only be deployed
on the Fujaba repository itself. Its cause is that the Fujaba code generator only
integrates with code complying to a Fujaba proprietary API. More specifically, it
generates code that is based on a specific association framework. Obviously, these
issues stand in the way of the approach becoming mainstream. They have been
overcome by, on the one hand, designing a UML profile for SDM, implying that
any CASE tool can be used for the development of transformation models, and
on the other hand, developing a new code generator for the resulting metamodel
[Sch04]. The latter was handled in such a way that the part which depends on the
target platform can easily be replaced.

This paper describes this work, and is organized as follows: First, we provide
the required background information by summarizing the related MDA standards.
Next, the architecture of the code generator is described, which is then illustrated by
an example of a model transformation. Finally, conclusions are drawn and potential
future work is discussed.

2 MDA Standards

As explained above, in spite of Fujaba’s value in validating numerous model man-
agement techniques [NZ99,NSW+02,WGN03], the tool lacks standardization. More
precisely, its code generator reads its input in a proprietary way, from a non-
standard repository, and generates output code for the same repository, again mak-
ing use of its non-standard API. In what follows, some standards and concepts,
which have been used to solve this problem, are presented.

2.1 Meta Object Facility (MOF)

The MOF standard [Obj02] essentially defines a four-layeredmetadata architec-
ture, as shown in Fig.1. At the top (M3) is the meta-metamodel (also known as
the MOF model), a universal language to define metamodels (M2). Metamodels
are themselves languages used to define models (M1), which in turn describe the
actual data (M0). In other words, the model at level Mn provides a description of
some common characteristics of the data at level Mn-1. One specific set of data,
conforming to a model, is called aninstanceof that model. As shown in Fig.2,
“model” and “metamodel” are relative concepts: a metamodel can easily be seen
as a model of a model, while the meta-metamodel can be seen as the model of a
metamodel. The Unified Modeling Language (UML) for example, can be formal-
ized by a metamodel (an instance of the MOF model). UML can be used to specify
class diagrams, activity diagrams, etc. which, as a consequence, can be parsed to
instances of the UML metamodel, or models at layer M1.

2



Schippers, Van Gorp and Janssens

Fig. 1. MOF Metadata Architecture

The MOF model is designed to be universal: it should be adequate to de-
scribeany metamodel, including its own metamodel (which is the MOF model
itself). Since “metamodel” is a relative concept, the meta-metamodel (i.e., the
MOF model) can be seen as the metamodel of all metamodels on the M2 layer.
In this sense, the MOF model can be stored on the M2 level. However, one can
only reason about all metamodels in a standard way by agreeing on one model for
meta-metamodeling. Therefore, the MOF model is logically considered to be on
the M3 level. In the context of this paper, the most important merit of the MOF
standard is that it allows the creation of tools for model analysis and manipulation,
which only depend on the MOF model, but not on any specific metamodel. In
particular, a MOF repository can be developed, which supports the storage of any
MOF-compliant models and metamodels. The open source NetBeans Metadata
Repository (MDR [Mic02b]) does just that, and was therefore a logical candidate
for the new code generator.

Fig. 2. The relationship between languages, models, metamodels and repositories.

2.2 Java Metadata Interface (JMI)

The MOF standard on itself is not the whole story, since it does not define how
models can be accessed from source code. Or rather, it does, but only for CORBA
IDL, and not for any other language. As its name suggests, the Java Metadata

3



Schippers, Van Gorp and Janssens

Interface (JMI) standard [Mic02a] provides a solution here, by actuallymapping
MOF to Java. More specifically, JMI defines one or more Java entities for each
MOF construct, thus introducing a standard API for model access. For example,
a MOF class is mapped to two Java interfaces: one “factory” (or “class proxy”)
interface for constructing objects and one “instance” interface for manipulating
them. By applying this mapping to a metamodel, which of course consists of these
MOF constructs (as it is a MOF instance), a metamodel-specific set of interfaces
is obtained, through which any instance of this metamodel can be accessed and
manipulated. In case of UML, for example, these interfaces can be used to add a
new UML class to a model of a class diagram, or find an existing UML association
and delete it. In addition, there is also a unique set of reflective interfaces, which
offers the same possibilities, but without having to use metamodel-specific code.

In order to understand that a standard like JMI is sufficient to build model-
manipulating tools in a metamodel- (and model-) independent way, the following
two points are crucial:

(i) modelmanipulation must always be carried out throughmetamodelinterfaces.
For example, a UML class diagram can only be seen in terms of UML classes,
UML attributes, UML associations, etc. which are all concepts from the UML
metamodel, and as such are present in the UML-specific interfaces.

(ii) indirectly making use of metamodel-specific interfaces, does not make a tool
metamodel-dependent. In the following section, it will be shown that the
code generator can produce metamodel-specific code by relying on the JMI
mapping rulesonly. Obviously, it is desirable that the generated codeis
metamodel-specific, as each model transformation is metamodel-specific as
well.

3 Architecture

This section describes the overall architecture of JCMTG, that is, the JMI Compli-
ant Model Transformer Generator, a standards-based alternative for Fujaba’s pro-
prietary way of handling model transformations.

3.1 UML Profile for SDM

As already indicated in Section1, the trouble with SDM (as it is used in Fujaba)
is that its syntax as well as its semantics are non-standard, even though they both
resemble their UML counterpart. The latter is illustrated in Fig.3, which dis-
plays an excerpt of an SDM specification in Fujaba. While elements of both ac-
tivity diagrams and collaboration diagrams can easily be recognized, it is clear that
no CASE tool is capable of drawing similar diagrams, as UML does not support
nesting in that way. Furthermore, the storage of SDM instances in Fujaba is also
non-standard. Both aspects of this problem were tackled in JCMTG by design-
ing a UML profile for SDM. In practice, this comes down tomappingeach SDM
construct to a UML alternative. Additionally, stereotypes have been used to dif-

4



Schippers, Van Gorp and Janssens

Fig. 3. Example SDM specification edited with the Fujaba UML tool.

ferentiate between several variants of the same basic SDM constructs (for example
forEach activities versuscodeactivities versus normalstory activities). For the
control flow part, this proved to be quite straightforward, because of the support
of activity diagrams in UML. For the so-calledtransformation primitives, which
actually resemble collaboration diagrams, UML class diagrams have been chosen
instead, as these often seem to offer more visual features, such as attribute assign-
ments. An excerpt of the SDM-to-UML mapping is given in Table1. It should now
be clear that the UML profile allows that, on the one hand, SDM specifications
can be drawn in any CASE tool, while on the other hand, since UML is a MOF
instance, a standards-based MOF repository (in particular, MDR) can be employed
for storage purposes.

SDM Construct UML Construct

Story Activity ActionState

ForEach Activity ActionState with «for each» stereotype

Unbound object UmlClass

Bound Object UmlClass with «bound» stereotype

Table 1
Extract from SDM-to-UML mapping

3.2 Generation of Transformation Code

An overview of the actual code generation process is displayed in Fig.4. The MOF
repository (MDR) plays an important part, and could be seen as the starting point,

5



Schippers, Van Gorp and Janssens

as it holds the transformation specification (or transformation model). Since MDR
provides a JMI API, this specification can be analyzed in a standardized way by
the code generator engine. The open source AndroMDA [Boh03] code generator
was chosen for this task, at the heart of which is in fact a set of dynamic content
templates. These provide a “skeleton” of the generated code, which is filled in
depending on the information in the transformation model.

MOF Repository

Transformation Model

Model to transform

Code Generator

Dynamic content Templates

Analyze through JMI calls

Generate transformation code

Transform through JMI calls

Java Transformation Code

Instance Of
I/O Metamodel

Is defined on

Fig. 4. JCMTG Architecture

Fig. 4 illustrates that this transformation model is defined on the metamodel
of the models to be transformed: since we are implementing translations, the in-
and output metamodel of the transformations is the same. The artifact resulting
from template instantiation is a Java source file, containing metamodel-specific JMI
code. This code can analyze and transform any model instantiating this metamodel.
In practice, a transformation writer defines model checks and transformations as
path navigations and rewritings over a graph structure of this metamodel. One can
define a type graph as a class diagram either manually or reverse engineer it from
the target repository sources. Ideally, class diagrams of mainstream metamodels
(e.g., UML 1.5, 2.0, ...) would be shared by the transformation community.

Note that, even though JMI sets a standard, it may be useful to generate code
for other platforms (after all this is MDA). In that case, the dynamic content tem-
plates can easily be replaced by a different set, which target a new platform like
repositories conforming to the Eclipse Modeling Framework (EMF [MDG+04]).

3.3 Constraints at Two Levels

There are two levels in the transformation process where constraints should be
checked.

In order to guarantee generation of correct code, it is important that a transfor-
mation model can be checked for well-formedness. Indeed, UML on itself has quite
loose semantics, and the interpretation specific to SDM is obviously not captured
at all. Ideally, a MOF repository should allow direct verification of such meta-
model well-formedness rules (OCL would make a good candidate here, since it is
a MOF instance itself), but unfortunately, this is currently not implemented in the
MDR. Therefore, the well-formedness of transformation models can currently only

6



Schippers, Van Gorp and Janssens

Fig. 5. Fragment of the UML 1.5 metamodel.

be verified after they have been serialized to XMI and imported in a dedicated OCL
constraint checker like OCLE [C+04].

Yet, there is another level where constraints come into play, namely within a
transformation specification. Indeed, it may be desirable to only execute (part of)
the transformation if a certain complex condition is satisfied, or perform different
actions depending on the truth value of such a condition. Thus, OCL is relevant
in that context too. However, once more, tool support is lacking. Pragmatically,
JCMTG adopted Java conditions instead. Note that this is not ideal, as it makes the
transformation model depend upon the target platform (JMI, EMF, ...), which pre-
vents large scale reuse of transformation specifications. The Dresden OCL Toolkit
[LO03] seems to be a promising alternative, as it should be capable of parsing OCL
constraints, and evaluating them directly on a MOF repository. Unfortunately, the
parser is still under development.

4 Example: Pull Up Method

Demonstrating how everything fits together is perhaps best done by means of an
example. Consider the so-called “pull up method” refactoring, which basically just
moves a method of class A to class B, where A inherits from B. The transformation
is defined on a fragment of the UML 1.5 metamodel shown in Fig.5.

The corresponding transformation model is illustrated in Fig.6 where, just as in
the Fujaba example (Fig.3 on page5), two main parts can be distinguished, albeit

7



Schippers, Van Gorp and Janssens

not nested anymore. Note that in the UML profile, the reference between the two
parts is maintained by means of a tagged value.

(a) (b)

Fig. 6. PUM transformation model

The transformation flow is quite straightforward. First a precondition, which
basically just makes sure it makes sense to apply the refactoring, is checked, and
only if it returned “true”, the actual transformation is carried out. The latter, the
so-called “transformation primitive” specifies a graph rewriting that is displayed in
Fig. 6 (b). It illustrates the main idea behind SDM: initially, a set of objects match-
ing the structure given in the primitive, is searched for. More precisely, a method
should be found, which belongs to a certain class “container” (this can be checked
via the “owner” association in the UML metamodel). Additionally, “container”
should have a superclass “superclass”, which can be reached by navigating through
the UML metamodel some more. If, and only if, such a structure can be matched,
the “owner” link to “container” is removed, and an “owner” link to “superclass” is
established, signaling successful completion of the transformation.

After specifying this transformation in a UML 1.5 compliant tool, one exports it
to XMI. JCMTG then generates a complete plugin for the Poseidon tool, which has
a JMI compliant UML 1.5 repository. Fig.7 displays the plugin popup appearing
when one right-clicks on a method. As specified in the abstract transformation, the
method will only be pulled up if the precondition of the refactoring is met.

5 Conclusion and Future Work

It should be clear that the elaborated approach solves the two significant issues
from which Fujaba suffers. First, the UML profile ensures the possible usage of
any UML 1.5 compliant CASE tool to draw transformation models, as well as stan-
dardized model access and storage. Second, the employment of pluggable dynamic
content templates guarantees independence from any specific target platform. Nev-
ertheless, JCMTG is only very young, and many aspects would benefit from certain

8



Schippers, Van Gorp and Janssens

Fig. 7. Screenshot from the UML CASE tool plugin generated from the abstract transfor-
mation specification.

improvements. As already mentioned in Section3.3 for example, better OCL tool
support both at metamodel- and model-level, would enable integration of constraint
checking. Additionally, expressiveness of SDM could be questioned, especially
in the context of inter-metamodel transformations, that is, transforming instances
from one metamodel to become instances of another metamodel. In this light, but
also when considering very complex transformations, it might be desirable to add
additional constructs to the language. Another important issue has to do with the
dynamic content templates. Although they can easily be replaced, chances are
that a significant amount of any other set of templates would be very similar, if
not identical. Therefore, it would probably be worthwhile to investigate how ex-
tra levels of abstraction can be introduced between the transformation model and
the transformation code. In this light, the transformation engine project at INRIA
[dReIeeAI04] is very promising, as it introduces a so-called “pivot-metamodel”.
This is a rather low-level metamodel, from which code generation is straightfor-
ward. The idea is that a transformation model is first translated to this pivot, in-
stead of generating code immediately. This would ensure that a change of target
platform only causes the (trivial) step from pivot to code to be replaced. Finally, a
note on the concrete syntax. The argument that the Fujaba notation was more ele-
gant than the, admittedly somewhat artificial, UML notation is probably valid. It is,
however, important to distinguish between concrete and abstract syntax. Only the
latter is really tied to UML, so nothing prevents a tool developer from creating an
environment with Fujaba’s concrete syntax, and transform this behind the scenes to
fit into the UML profile for storage. That way, the possibility that for instance an
abundance of stereotypes would make transformation specifications less readable,
would not be an issue anymore.

9



Schippers, Van Gorp and Janssens

References

[Boh03] M. Bohlen. AndroMDA - from UML to Deployable Components, version
2.1.2, 2003.
<http://andromda.sourceforge.net>.

[C+04] D. Chiorean et al. Object constraint language environment (OCLE), version
2.02, 2004.
<http://lci.cs.ubbcluj.ro/ocle>.

[dReIeeAI04]Institut National de Récherche en Informatique et en Automatique (INRIA).
MTL Model Transformation Engine, 2004.
<http://modelware.inria.fr>.

[FNTZ98] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Diagrams: A New
Graph Rewrite Language Based on the Unified Modeling Language and
Java. InProceedings of the 6th International Workshop on Theory and
Application of Graph Transformation (TAGT), volume 1764 ofLNCS, pages
296–309. Springer Verlag, November 1998.

[GEJ03]Pieter Van Gorp, Niels Van Eetvelde, and Dirk Janssens. Implementing
Refactorings as Graph Rewrite Rules on a Platform Independent Metamodel.
In Proceedings of the 1st International Fujaba Days, University of Kassel,
Germany, October 2003.

[Gor04] P. Van Gorp. Write Once, Deploy N: a Performance Oriented MDA Case
Study. In Dagstuhl Seminar 04101 - Language Engineering for Model-
Driven Software Development, march 2004.

[LO03] S. Loecher and S. Ocke. A Metamodel-Based OCL-Compiler for UML and
MOF. In UML 2003 - The Unified Modeling Language. Model Languages
and Applications. 6th International Conference, San Francisco, CA, USA,
October 2003.

[MDG+04] Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, and
Philippe Vanderheyden.Eclipse Development using the Graphical Editing
Framework and the Eclipse Modeling Framework. IBM Redbooks.
International Business Machines, January 2004.

[Mic02a] Sun Microsystems. Java Metadata Interface Specification, June 2002.
document ID JSR-40.

[Mic02b] Sun Microsystems. NetBeans Metadata Repository, 2002.
<http://mdr.netbeans.org/>.

[NSW+02] J. Niere, W. Schäfer, J.P. Wadsack, L. Wendehals, and J. Welsh. Towards
pattern-based design recovery. InProc. of the24th International Conference
on Software Engineering (ICSE), Orlando, Florida, USA, pages 338–348.
ACM Press, May 2002.

10



Schippers, Van Gorp and Janssens

[NZ99] J. Niere and A. Zündorf. Using fujaba for the development of production
control systems. InProc. of International Workshop and Symposium
on Applications Of Graph Transformations With Industrial Relevance
(AGTIVE), Kerkrade, The Netherlands, LNCS 1779. Springer Verlag, 1999.

[Obj01] Object Management Group. Model Driven Architecture (MDA), July 2001.
document ID ormsc/01-07-01.

[Obj02] Object Management Group. Meta-Object Facility Specification, April 2002.
version 1.4. document ID formal/02-04-03.

[Sch04]Hans Schippers. JMI Conforme Modeltransformator Generator. Master’s
thesis, University of Antwerp, Belgium, 2004.

[SK03] S. Sendall and W. Kozaczynski. Model Transformation - The Heart and Soul
of Model-Driven Software Development.IEEE Software, Special Issue on
Model Driven Software Development, pages 42–45, Sept/Oct 2003.

[WGN03] Robert Wagner, Holger Giese, and Ulrich Nickel. A plug-in for
flexible and incremental consistency management. InProc. of the
International Conference on the Unified Modeling Language 2003
(Workshop 7: Consistency Problems in UML-based Software Development),
San Francisco, USA, October 2003.

11


	Introduction
	MDA Standards
	Meta Object Facility (MOF)
	Java Metadata Interface (JMI)

	Architecture
	UML Profile for SDM
	Generation of Transformation Code
	Constraints at Two Levels

	Example: Pull Up Method
	Conclusion and Future Work
	References

