
1.Introduction

CHAPTER 1 – Introduction
Software Engineering

• Why & What
• Product & Process

⇒ Correctness & Traceability

Software Process
• Activities
• Waterfall
• Iterative & Incremental Development
• Sample Processes

+ Unified Process
+ Spiral model

Software Product
• UML - History
• UML - Static
• UML - Dynamic

1

1.Introduction

Literature
• [Ghez02a] — [Pres01a] — [Somm04a]

Introductory chapters

Other
• [Brue00] Object-Oriented Software Engineering, B. Bruegge, A. Dutoit,

Prentice Hall, 2000.
➡ One of the first software engineering textbooks with a specific

object-oriented perspective
• [Gold95a] Succeeding with Objects: Decision Frameworks for Project

Management, A. Goldberg and K. Rubin, Addison-Wesley, 1995.
➡ Explains how to define your own project management strategy

2

1.Introduction

Why Software Engineering ?

3

A naive view on software development

Specification Final
Program

But...
•Where did the specification come from?
•How do you know the specification corresponds to the user’s needs?
•How did you decide how to structure your program?
•How do you know the program actually meets the specification?
•How do you know your program will always work correctly?
•What do you do if the users’ needs change?
•How do you divide tasks if you have more than a one-person team?

1.Introduction

What is Software Engineering ?

4

Some Definitions and Issues
• “state of the art of developing quality software on time and within budget” [Brue00]

- Trade-off between perfection and physical constraints
➡SE has to deal with real-world issues

- State of the art!
➡ “best practice” is a moving target => life-long learning

• “multi-person construction of multi-version software” [Parnas]
- Team-work
➡Scale issue + Communication Issue

- Successful software systems must evolve or perish
➡Change is the norm, not the exception

• “software engineering is different from other engineering disciplines” [Somm04a]
- Not constrained by physical laws
➡ limit = human mind

- It is constrained by political forces
➡balancing stake-holders

1.Introduction

Product and Process

5

Requirement
Specification System

Product
= What is delivered to the customer
[Requirements Specification + System (+ all documentation, manuals, ...)]

Process
= Collection of activities that leads to (a part of) a product
[During process we apply techniques]

1.Introduction

Evaluation Criteria

6

Requirement
Specification System

2 evaluation criteria to assess techniques applied during process

Correctness
•Are we building the right product?
•Are we building the product right?

Traceability
•Can we deduce which product components will be affected by changes?

1.Introduction

Traceability

7

How to predict impact of changes ?
Maintain relationship
• from component to requirement that caused its presence
• from requirement that must be changed when component is adapted

Comp 1 Comp 2 … … … … … Comp m

Req 1

Req 2

…

…

…

Req n

x

x x

x

x x

x

This table is virtual: it is much too large to maintain explicitly !

⇒ A good process should help you deducing this relationship.

1.Introduction

Software Process Activities (i)

8

Requirement
Specification System

Requirement
Collection

Analysis

Design
Maintenance

Implementation
Testing

+ Quality
Assurance

+ Quality

Assurance

1.Introduction

Software Process Activities (ii)

9

Requirements Collection
• Establish customer’s needs

Analysis
• Model and specify the requirements (“what”)

Design
• Model and specify a solution (“how”)
• system design (architecture) + detailed design (object design, formal spec)

Implementation
• Construct a solution in software

Testing
• Verify the solution against the requirements

Maintenance
• Change a system after its been deployed
• = Repair defects + adapt to new requirements

Quality Assurance
• Make sure all above goes well

= Deliver quality, on time and within budget

1.Introduction

The Waterfall Software Lifecycle

10

The classical software life cycle
models the software
development as a step-by-step
“waterfall” between the various
development activities.
•going backward is possible but

should be an exception
(implies a mistake)

The waterfall model is popular for upper management, because
•Visible: it is easy to control project progress

The waterfall model is unrealistic for large projects, because
•Complete: a customer cannot state all requirements explicitly
• Idealistic: in real projects iteration occurs (but tools and organisation obstruct)
•Time: A working version of the system is only available late in the project
•Change: it is very difficult and costly to adapt to changes in the requirements

Requirement
Collection

Analysis

Design

Implementation

Maintenance

Testing

1.Introduction

Iterative and Incremental Development

11

A good process must mix two principles (see [Gold95a], p. 94-96)

Iterative Development
• Controlled reworking of a system part to make improvements

➡ We get things wrong before we get them right
(Software development is a learning experience)

Incremental Development
• Make progress in small steps to get early tangible results

➡ Always have a running version
(Control your learning via concrete intermediate steps)

1.Introduction

The Unified Process

12

How do you plan the number of iterations? How do you decide on completion?

1.Introduction

Boehm’s Spiral Lifecycle

13

go, no-go decision

Stop ?
After risk analysis

1.Introduction

Risk Analysis

14

Risk Identification
➡ Identify risk factors via “risk item checklist”

(see [Pres01a])
• Project Risks: e.g., staffing risk
• Technical Risks: e.g. “leading edge” technology
• Business Risks: e.g., market risk (building a product that nobody wants)

Risk Projection (Risk Estimation)
➡For each risk factor, estimate the probability and the impact
➡Prioritize the list

• unimportant: low/moderate probability + low impact
• critical: high impact + moderate/high probability
• low impact + high probability

Risk Assessment
➡For each critical risk factor, take action to reduce risk or terminate project

• Staff does not have the right skills -> Define training plan and hire extra staff
• “Leading edge” technology -> Build a prototype to evaluate benefits/drawbacks
• Market risk -> do a market study

1.Introduction

Prototyping

15

A prototype is a software program developed to test, explore or
validate a hypothesis, i.e. to reduce risks.

An exploratory prototype, also known as a throwaway prototype, is
intended to validate requirements or explore design choices.
•UI prototype — validate user requirements
•rapid prototype — validate functional requirements
•experimental prototype — validate technical feasibility

An evolutionary prototype is intended to evolve in steps into a
finished product
•grow, don’t build [Broo87a]: “grow” the system redesigning and
refactoring along the way

•combines incremental and iterative development

*** First do it, then do it right, then do it fast.

1.Introduction

Manifesto for Agile Software Development

16

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

© 2001, the above authors this declaration may be freely copied in any form, but only in its entirety through this notice.

http://agilemanifesto.org/

1.Introduction

eXtreme Programming (XP)

17

Fine scale feedback
• Pair programming
• Planning game
• Test-driven development
• Whole team

Continuous process
• Continuous integration
• Refactoring or design

improvement
• Small releases

Shared understanding
• Coding standards
• Collective code ownership
• Simple design
• System metaphor

Programmer welfare
• Sustainable pace

Coding
• The customer is always

available
• Code the Unit test first
• Only one pair integrates code

at a time
• Leave Optimization till last
• No Overtime

Testing
• All code must have Unit tests
• All code must pass all Unit tests

before it can be released.
• When a Bug is found tests are

created before the bug is
addressed (a bug is not an
error in logic, it is a test you
forgot to write)

• Acceptance tests are run often
and the results are published

http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Planning_game
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Planning_game
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Whole_team
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Whole_team
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Small_releases
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Small_releases
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Coding_standard
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Coding_standard
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Collective_code_ownership
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Collective_code_ownership
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Simple_design
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Simple_design
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#System_metaphor
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#System_metaphor
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Sustainable_pace
http://en.wikipedia.org/wiki/Extreme_Programming_Practices#Sustainable_pace
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Optimization
http://en.wikipedia.org/wiki/Optimization
http://en.wikipedia.org/wiki/Overtime
http://en.wikipedia.org/wiki/Overtime
http://en.wikipedia.org/wiki/Unit_tests
http://en.wikipedia.org/wiki/Unit_tests
http://en.wikipedia.org/wiki/Unit_tests
http://en.wikipedia.org/wiki/Unit_tests
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Acceptance_tests
http://en.wikipedia.org/wiki/Acceptance_tests

1.Introduction

SCRUM

18

Rugby metaphor

Sprint =
•2-4 week period
• team creates a working (=

potentially shippable) product
increment

• features in increment are chosen
from product backlog

1.Introduction

SCRUM

18

Rugby metaphor

Sprint =
•2-4 week period
• team creates a working (=

potentially shippable) product
increment

• features in increment are chosen
from product backlog

1.Introduction

SCRUM

18

Daily stand-up meeting !

Rugby metaphor

Sprint =
•2-4 week period
• team creates a working (=

potentially shippable) product
increment

• features in increment are chosen
from product backlog

1.Introduction

SCRUM

18

Daily stand-up meeting !

Rugby metaphor

Sprint =
•2-4 week period
• team creates a working (=

potentially shippable) product
increment

• features in increment are chosen
from product backlog

1.Introduction

Agile or not ? There is no single truth …

19

Heavyweight Lightweight

1.Introduction

UML - History

20

First generation:
• Adaptation of existing notations (ER diagrams, state diagrams...):

➡ Booch, OMT, Shlaer and Mellor,...
• Specialized techniques:

➡ CRC cards; use-cases; design by contract

Second generation:
• Combination of “proven” ideas

➡ Fusion: Booch + OMT + CRC + formal methods

Third generation:
• Unified Modeling Language:

➡ uniform notation: Booch + OMT + Use Cases + Statecharts
➡ complete lifecycle support (the Unified Process)
➡ adaptable: you can extend the notation, choose your own

process

1.Introduction

Static UML - Classes (i)

21

display (on: Surface)

rotate (angle: Integer)

erase ()

destroy ()

select (p: Point): Boolean

centre: Point

vertices: List of Point

borderColour: Colour

fillColour: Colour

Polygon
Polygon

ZWindows::Window

Class name, attributes and
operations:
(organized into compartments)

A collapsed class view.
(NB: attributes & operations
not shown, so don’t know
whether empty or not!)

Class with Package name:
(Optional, but useful for
large systems !)

Attributes and operations are also collectively called features.

1.Introduction

Static UML - Classes (ii)

22

+display ()

+hide ()

+create ()

-attachXWindow (xwin: Xwindow*)

+size: Area = (100, 100)

#visibility: Boolean = false

+default-size: Rectangle

#maximum-size: Rectangle

-xptr: XWindow*

<<user interface>>
Window

{abstract}

User-defined properties
(e.g., abstract, readonly,
owner = “Pingu”)

Stereotype
(what “kind” of class is it?)

•underlined features
have class scope

• italic features are
abstract

+ = “public”
= “protected”
- = “private”

• Attributes are specified as: name: type = initialValue { property string }
• Operations are specified as: name (param: type = defaultValue, ...) : resultType

1.Introduction

Static UML - Associations

23

name
address

Company
name
AHV nr
address

Person

**
employer employee

Employs !

Works-for

!

0..1

0..1

Married-to

0..1

*

boss

worker

!

Manages

Associations
•denoted by a solid line.
• represents structural relationships between objects of different classes.

•optional name and direction
• (unique) role names and multiplicities at end-points

(BEWARE POSITION)
• traverse using navigation expressions

e.g., universityAntwerp.employee[name = “Demeyer”].wife

1.Introduction

Static UML - Aggregation & Composition

24

3..*1
Polygon Point

Contains ! {ordered}

fillPattern
linePattern

GraphicsBundle
1

1

Aggregation
•denoted by a hollow diamond
•whole-part relationship: part may exist without the whole

(i.e. whole owns a reference to the part)
Composition
•denoted by a solid diamond
•whole-part relationship: part must always exist with the whole

(i.e., whole owns the part)

1.Introduction

Static UML - Generalization

25

Generalization
•denoted with a hollow arrow from the specific to the general
• represents inheritance, is-a relationships, code reuse relationship

(philosophical debate: Square inherits from Rectangle or vice-versa)

display ()

colour

Figure
{abstract}

display ()

endpoints

Line

display ()

radius
start_angle
arc_angle

Arc

display ()

control_points

Spline

1.Introduction

Dynamic UML - Objects

26

centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

triangle1: Polygon triangle1: Polygon

: Polygon

triangle1

Objects
• shown as rectangles with their name and type underlined in one compartment
•attribute values, optionally, in a second compartment
• the name of the object may be omitted (then colon must be kept with class name)
• the class of the object may be supressed (together with the colon) to represent an

anonymous object

1.Introduction

Dynamic UML - Sequence Diagrams

27

Sequence Diagrams
•Object at top, lifeline as dashed vertical line (time flows from top to bottom)
•Method execution as rectangle, message sends as arrow with message name
•Possibility to show concurrency via special arrowheads

: User : Store

: Item

request()
newItem(3)

i := query()

check(i)

destroy()

Async Message

Simple Message

Synchronous with Immediate Return

Synchronous

1.Introduction

Dynamic UML - Collaboration Diagrams

28

Collaboration Diagrams
•Objects with associations positioned freely in the diagram
•Messages with little arrows near to associations
•Message sequences follow from hierarchical numbering
•Expressibility is identical to sequence diagrams

⇒Freedom in lay-out but message sequence difficult to follow

: User

: Store : Item

1: request()

1.1: newitem(3)

1.2: i := query()

1.4: destroy()

1.3: check(i)

1.Introduction

Summary (i)

29

You should know the answers to these questions:
• How does Software Engineering differ from programming?
• Why is programming only a small part of the cost of a “real” software project ?
• Give a definition for “traceability”.
• What is the difference between analysis and design?
• Why is the “waterfall” model unrealistic? Why is it still used?
• What’s the relationship between iterative development, incremental development and

(evolutionary) prototyping?
• How do you decide to stop in the spiral model?
• How do you identify risk ? What do you do when projecting a risk? Which risks do you

assess as critical?
• List the 6 principles of extreme programming.
• What is a “sprint” in the SCRUM process ?
• Draw a UML class diagram modeling marriages in cultures with monogamy (1 wife

marries 1 husband), polygamy (persons can be married with more than one other
person), polyandry (1 woman can be married to more than one man) and polygyny (1
man can be married to more than one woman).

• Draw a UML diagram that represents an object “o” which creates an account (balance
initially zero), deposits 100$ and then checks whether the balance is correct.

1.Introduction

Summary (ii)
Can you answer the following questions?

• What is your preferred definition of Software Engineering? Why?
• Why do we choose “Correctness” & “Traceability” as evaluation criteria? Can you imagine

some others?
• Why is “Maintenance” a strange word for what is done during the activity?
• Why is risk analysis necessary during incremental development?
• How can you validate that an analysis model captures users’ real needs?
• When does analysis stop and design start?
• When can implementation start?
• Can you compare the Unified Process and the Spiral Model ?
• Can you explain the values behind the Agile Manifesto ?
• Can you identify some synergies between the techniques used during extreme

programming ?
• Is it possible to apply Agile Principles with the Unified Process ?
• Did the UML succeed in becoming the Universal Modeling Language ? Motivate your

answer.

30

