
The Use of Industrial-Strength Formal Methods

Jonathan P. Bowen Michael G. Hinchey

The University of Reading New Jersey Institute of Technology

Department of Computer Science Real-Time Computing Laboratory

Whiteknights, PO Box 225 CIS Department, University Heights

Reading, Berks RG6 6AY, UK Newark, NJ 07102, USA

Email: J.P.Bowen@reading.ac.uk Email: hinchey@cis.njit.edu

Abstract

Formal methods are used in a surprisingly wide va-

riety of applications and ways throughout the world.

While they may still be considered a niche market,

there is growing evidence that they can be used suc-

cessfully in industry if applied judiciously. This paper

discusses some of the issues concerning the successful

application of formal methods and surveys a number

of examples of industrial usage, with a large bibliogra-

phy for further reading on the state of the art in this

area.

1 Introduction

Formal methods are recommended by many aca-

demics but avoided by many industrial practitioners.

Despite some successes, formal methods are still lit-

tle used in industry at large, and are seen as esoteric

and irrelevant by many managers. The debate about

the applicability of formal methods in practice contin-

ues apace [18], perhaps due to over-optimistic expecta-

tions by some [24]. There are many myths concerning

the use of formal methods [15, 6], although guidance

[7]. and standards [5, 3] are readily available; but in

order for the techniques to become widely used, tech-

nology transfer from theorists to practitioners must be

fostered [4].

This paper surveys a selection of industrial applica-

tions where formal methods have been used e�ectively.

Following on from an existing book giving examples of

formal methods in use [19], a selection of further exam-

ples in a forthcoming book [20] are outlined. Finally

some issues to be considered for continuance of the

technology transfer process are aired.

2 Example Uses of Formal Methods

We present a collection of examples of use of

industrial-strength formal methods, performed by ex-

perts in the �eld. More complete information and de-

tails may be found in the books [19] and [20]. A ex-

cellent survey of a number of industrial applications

of formal methods is reported in [10]. Summaries of

observations as a result of this large report may be

found in [14] (particularly with regard to critical sys-

tems) and [11].

Two other recent collections of case studies apply-

ing di�erent formal methods to the same case study

are a production cell [23] and a steam boiler controller

[1]. The latter includes a CD-ROM containing mate-

rial associated with the various approaches.

� Experience using Promela and Z in the De-

sign of a Storm Surge Barrier Control System

(Computer Management Group, The Netherlands)

As the �nal phase of a 40 year project to protect

the Netherlands against 
oods due to storm surges,

a movable barrier is currently being built near Rot-

terdam. A fully automated system, called BOS, will

operate the barrier. BOS takes the decision to open

or close the barrier based on measurements collected

through various sensors and networks, and it controls

the movements of the barrier. The system has to sat-

isfy very high reliability demands. Not closing in time

could result in the 
ooding of Rotterdam, whereas not

opening in time could cause severe damage to the bar-

rier itself. As long as the barrier is closed the impor-

tant harbor of Rotterdam is cut o� from the rest of

the world, leading to great economic losses.

Computer Management Group (CMG) was

awarded the contract from the Netherlands Ministry

of Public Works to build BOS. Because of the high re-

liability requirements BOS has to meet, CMG estab-

lished a close collaboration with the Formal Methods

group at the University of Twente to transfer knowl-

edge and provide consultancy on the application of

formal methods to system design.

As part of an e�ort to integrate formal methods



with CMG's design trajectory the decision was made

to:

1. Use the Spin tool to validate Promela speci�ca-

tions concerning the communication between sub-

systems of BOS, and communication with com-

ponents belonging to the `outside world' from the

perspective of BOS.

2. Use Promela combined with Z to formally specify

crucial parts of the design.

The Spin tool set (Spin and Xspin) was used to val-

idate parts of the design, in particular the commu-

nication interfaces with the outside world. Promela

combined with Z was used to specify crucial aspects

of the design. The Z speci�cations were used initially

to clarify requirements in the form of data
ow dia-

grams and natural language texts. In a later stage of

the project, the Z specs were used to derive tests for

the components of the BOS system.

� Demonstrating the Equivalence of Source

Code and PROM Contents

(Nuclear Electric, UK)

The translation of the requirements for a computer

based system into the stored code executed by the is

an extended process with many opportunities for the

introduction of errors. One potential source of errors

is the suite of tools used to translate the high level

language source program, de�ning the algorithms to

be used, into the binary code, stored in PROM, which

actually controls the system.

A highly automated technique has been devel-

oped to demonstrate equivalence between the source

code and PROM contents for a safety critical pro-

grammable protection system which is to be used in

the UK nuclear industry [31].

� Formal Top Level Speci�cation of the Honey-

well STOP Operating System

(Data Sciences, UK)

A prototype exercise has been carried out to con-

struct, using the Z notation, a formal speci�cation of

a secure software system based on a sample set of the

elements of the STOP operating system. The speci�-

cation comprises a mathematical description of a se-

cure state, together with a mathematical description

of three system operations which change the state.

It appeared that a formal speci�cation of STOP,

written in the Z notation, would be a useful entity

from the system developer perspective. In addition,

it would provide further evidence of the power of the

notation, e.g., in this case, as a technique for the a

posteriori description of existing products as distinct

from its use in development. It was judged that, with

the aid of judicious choice, a `prototype sample' of

the system could be selected which would enable some

kind of feel to be gained of the di�culty involved in

formally specifying its behavior, and of the usefulness

(in terms of understanding, etc.) of the results.

� Scheduling and Rescheduling of Trains

(Chinese railway and UNU/IIST, Macau)

Work has been undertaken by UNU/IIST (at the

United Nations University in Macau) involving sta�

from the Chinese railways. The immediate aim was to

develop software that can improve the e�ciency of the

Chinese railway system, particularly in the scheduling

of trains. In the longer term it is hoped to develop the

capacity of the Chinese railways to produce and even

market their own software. The part of the project

described includes the development of formal mod-

els of some basic components of railways (networks of

stations and lines and timetables) and the activities

needed to schedule and reschedule trains using a `run-

ning map'. This part �nished with the delivery of a

prototype running map tool, and some conclusions are

drawn about the formal development of this tool. The

work used the RAISE speci�cation language, method

and tools [27].

� Formalization of Automatic Protection

Switching

(AT&T, USA)

Some of the most important requirements that soft-

ware developers must satisfy come from international

standards. Unfortunately, standards are not always

expressed in formal notations, and may be ambigu-

ous or incomplete. Standards for automatic protection

switching of telecommunication devices have been ex-

pressed in several formalisms, including basic LOTOS

(Language Of Temporal Ordering Speci�cations) [29]

and Z. In the process several ambiguities in the stan-

dards have been discoved, together with some di�cul-

ties in applying the formalisms.

� The French Population Census for 1990

(INSEE, France)

This is an example of formal techniques which have

proven bene�cial in the design and development of the

system supporting the 1990 French Population Cen-

sus. The techniques covering the whole development

process, from speci�cation through to implementation

and subsequent veri�cation and validation, are generic

enough to be of wide applicability. The B-Method was

employed in the development of the system. Re�ne-

ment was exploited in constructing the speci�cation.



The system supporting the census is so large that

it had to be built incrementally. More precisely, the

system had to grow without modi�cations to its ker-

nel. This is why a structure for accessing data was

de�ned at the outset. The structure was based on

the administrative geography of France at the date

of the census. During the development of the system

additional information was introduced. This was per-

formed smoothly by storing the new information in

databases possessing the same structure.

Implementation was carried out by re�nement up

to a point where it was system dependent. The im-

plementation of low level B abstract machines is gen-

erated by a tool. This tool can generate implemen-

tations for a machine where the prototype has been

tested and for the mainframe where the system is now

running. The system is of a signi�cant size and reli-

ably handles a huge amount of data in a very e�cient

way; it has been validated by inspection, testing, and

last but not least, through �ve years of constant use.

� Rigorously Reviewing Structured Speci�ca-

tions using Z

(BT, UK)

The Rigorous Review Technique (RRT) was devel-

oped during a collaboration between BT (UK) and

Leeds Metropolitan University. The technique in-

volves a systematic transformation of a structured

speci�cation (minimally Entity-Relationship Model

and Data-Flow Diagrams together with the related

Data Dictionary entries) into the Z formal speci�ca-

tion notation.

RRT has been demonstrated to reveal errors and

inconsistencies not normally found using conventional

review techniques. The results reveal not only prob-

lems with the speci�cation, but also problems with the

development process.

� Analyzing Z Speci�cations with Z/EVES

(ORA, Canada)

The capabilities of ORA Canada's recently released

Z/EVES system [28] have been demonstrated by ana-

lyzing a formalization of the sliding window protocol.

They show how Z/EVES can be used in four di�er-

ent styles for analyzing Z speci�cations: type check-

ing, schema expansion, domain checking, and proof of

general conjectures.

� Using Formal Methods to Develop an ATC

Information System

(Praxis Critical Systems, UK)

CDIS is a display information system supporting

the new terminal control room at the London area and

Terminal Control Centre [16]. It is a distributed real-

time information system supporting air tra�c con-

trollers. CDIS was developed using advanced software

engineering techniques including the extensive use of

formal methods for speci�cation and design. The ap-

plication showed that formal methods can improve

quality at no extra cost, and that they are applica-

ble to a large, demanding project.

� Formal Development of a Radiation Therapy

Machine Control Program

(University of Washington, USA)

The control program and graphical user interface

for a radiation therapy machine at University of Wash-

ington, in Seattle, have been developed using formal

methods over a long period [21]. The control program

of the machine, whose correct operation is clearly

safety-critical, was developed using the Z notation for

speci�cation, design, and subsequent veri�cation [22].

� Experience Developing a Trustworthy Net-

work Security Device

(Naval Research Laboratories, USA)

The successful application of formal methods to en-

gineer systems of interest to industry or the military

requires their balanced integration with less formal

methods (e.g., see [2]). Competing factors such as

system safety, security, performance, mission and de-

velopment time and cost must be weighed and priori-

tized when de�ning the process to be used to develop

the system. The development of a �eldable network

security device, called the External COMSEC Adap-

tor (ECA), used formal methods in the speci�cation

and veri�cation of its most critical requirements and

testing and simulation in the veri�cation of its overall

functional requirements.

The development process integrates the formal

speci�cations and proofs with structured software doc-

umentation to clarify the relationship between the re-

�nement of ECA functionality and the formal argu-

ment that the ECA satis�es its critical requirements.

Although the process enabled the successful construc-

tion of the ECA by properly balancing competing re-

quirements, the experience suggested a number of im-

provements that could be made to the process.

� Formal Analysis of the UEPS Second Gener-

ation Electronic Wallet

(University of Cambridge, UK)

UEPS, the Universal Electronic Payment System,

is an electronic funds transfer product which is well

suited to developing country environments, where

poor telecommunications make o�-line operation nec-

essary. It is designed around an electronic wallet



with smart-card and check-book functions; money is

loaded from the the bank, via bank cards, to cus-

tomer cards, to merchant cards, and �nally back to

the bank through a clearing system. This architec-

ture is uniquely demanding from the point-of-view of

security.

As far as the authors are aware, UEPS is the

�rst live �nancial system whose authentication pro-

tocol was designed and veri�ed using formal analysis

techniques. This was achieved using an extension of

the Burrows{Abadi{Needham (BAN) logic, and raises

some interesting questions: �rstly, such formal logics

had been thought limited in scope to verifying mu-

tual authentication or key sharing; secondly, this work

has found hidden assumptions in BAN, and a problem

with the postulates of the Gong{Needham{Yahalom

logic, both concerning freshness; thirdly, the author

highlights the need for a formalism to deal with cryp-

tographic chaining; and fourthly, this type of formal

analysis turns out to be so useful that its applications

should be routine for �nancial and security-critical

systems.

� Cleanroom Software Engineering: Theory

and Practice

(Software Engineering Institute, USA)

Cleanroom Software Engineering is a theory-based,

team-oriented process for developing and certifying

high-reliability software with high productivity. The

Cleanroom process puts software development and

testing under statistical quality control. In this pro-

cess, mathematics-based techniques for speci�cation,

design, and correctness veri�cation are used to create

software approaching zero faults prior to �rst execu-

tion. Statistical usage-based testing is then applied to

provide objective statistical estimates of software re-

liability and �tness for use. The Cleanroom process

begins with a speci�cation that not only de�nes func-

tional requirements, but also identi�es the statistical

usage of the software and a nested set of usable func-

tion subsets that can be developed and certi�ed as in-

crements which accumulate into the �nal system. Dis-

ciplined software engineering techniques for design and

correctness veri�cation create provably correct soft-

ware components for statistical testing and reliability

certi�cation.

The Cleanroom process has been applied in a vari-

ety of environments, ranging from transaction oriented

systems to real-life embedded software. Cleanroom

provides a disciplined implementation of key elements

of the Software Engineering Institute's Capability Ma-

turity Model (CMM) for Software. The use of Clean-

room continues to grow as societal needs for reliable

software continue to increase.

3 Future Developments

The future of formal methods is a subject of con-

tinued discussion [17]. To secure a successful future, a

number of developments are desirable. These include:

� An engineering approach. Formal methods

must be integrated smoothly into existing indus-

trial best practice in a manner which causes as

little disruption as possible [25].

� Improved tools. Most formal methods tools

so far have resulted from formal methods re-

search projects, and associated spin-o� compa-

nies, rather than mainstream tools developers. As

a result, their usability, and sometimes robust-

ness, can often leave a lot to be desired. Unfor-

tunately the formal methods tools market is still

fairly small and raising capital to invest in serious

production quality tools may be di�cult. Raising

commercial venture capital is likely to be di�cult

because the banks will be more interested in the

size of the market rather than the potential im-

provement in software quality.

� Technology transfer investment. The trans-

fer of technology like formal methods is a time

consuming and costly business [30]. The e�ects

and bene�ts of formal methods are less palpable

than some of the other more popular techniques

that come and go with fashion. The investment

in learning and using formal methods is large, but

the returns in the long term can be commensu-

rate with this. Most people who have made the

investment have not regretted it afterwards, and

would not go back to their old ways.

� Harmonization of engineering practices.

While the use of formal methods may seem to

run perpendicular and even counter to some other

concerns on software engineering projects, such

friction should be minimized. It is important that

all those involved, be it managers or engineers,

and whether the personnel involved fully under-

stand the techniques or not, at least understand

the way the techniques slot into the overall frame-

work. It can be galling to some managers that

the use of formal methods considerably delays the

start of production of code in the lifecycle. How-

ever it considerably speeds up and improves its

production when it is generated.

� Practical experience. A number of signi�cant

projects have now been undertaken using formal



methods, a number of which have been outlined in

this paper, but more are needed to gain a better

insight into the general applicability of such tech-

niques. Most successful formal methods project

have had the help of an expert on call in case of

di�culty. It remains to be seen if formal meth-

ods can be successfully applied when less expert

help is at hand. Fortunately computer science un-

dergraduate courses (in Europe at least) do now

provide some suitable grounding for many soft-

ware engineers who are now entering the profes-

sion. However, the e�ects will take some time to

�lter through in practice.

� Assessment and measurement. Metrics are a

problematic area. It would obviously be helpful

and commercially advantageous to know the ef-

fect of the use of formal methods on the produc-

tivity, error rates, etc., in the development pro-

cess. However these can be hard and expensive

to obtain, and even if actual �gures are avail-

able, these may not measure the aspect that is

of real interest. It is also di�cult to obtain such

commercially sensitive data in the public domain,

which slows both academic study and potential

solutions to the problems. Metrics should be

treated with caution, but improvements in such

techniques would be worthwhile.

� Education and certi�cation. Most modern

comprehensive standard textbooks on software

engineering now include a section on formal meth-

ods. Many computing science courses, especially

in Europe, are now including a signi�cant por-

tion of basic relevant mathematical training (e.g.,

discrete mathematics [12]). In this respect, ed-

ucation in the US seems to be lagging behind,

although there are some notable exceptions (e.g.,

see [13]). It is particularly important that the

techniques, once assimilated, are used in practice

as part of an integrated course, but this has not

always been the case in the past.

Once a software engineer is educated with the rel-

evant background and techniques, accreditation

by professional institutions may be an important

indicator of a certain level of competence, and of

continuing training to remain up to date. Checks

on software engineers are often very lax compares

to those for other types of engineer, even in the

development of highly critical systems.

� Standards and legislation. Standards are in-

creasingly important as a driving force for the use

of formal methods by industry [9]. Some stan-

dards strongly recommend or even mandate a for-

mal approach, especially for high integrity appli-

cations such as safety-critical systems. Legisla-

tion can also insist that appropriate techniques

are used when human lives are at risk. The case

can arise whereby techniques used to develop soft-

ware must be defended and justi�ed in a court

of law [26]. Given the exponentially increasing

use of computers in such systems because of their


exibility, it is likely that formal methods will at

least attain a niche market in this area.

4 Conclusion

This paper has surveyed some potential misun-

derstandings concerning the industrial use of formal

methods, some suggestions for guidance for successful

application, and state of the art use of formal methods

in a number of di�erent areas. It is hoped that this

overview will be of bene�t to those considering the use

of formal methods for either software or hardware de-

velopment by highlighting the ways in which formal

methods are being used. A large bibliography is in-

cluded for those who wish to read about the issues,

experiences and technical details further.

The actual formal methods, etc., available at any

given time, can and will of course vary, and hope-

fully improve. Further up-to-date on-line information

concerning formal methods, including companies in-

volved in their use, can be found on-line under the

World Wide Web Virtual Library formal methods sec-

tion, maintained by one of the authors of this paper.

Information on the book Industrial-Strength Formal

Methods [20], including a link to the above informa-

tion, may be found under the following URL (Uniform

Resource Locator):

http://www.cs.reading.ac.uk/archive/isfm/

Acknowledgement

Some of the information included here has been

provided by contributors the forthcoming book men-

tioned above [20], edited by the authors of this paper.

Without their contributions this paper would not have

been possible.

References
[1] J.-R. Abrial, E. B�orger, and H. Langmaack, editors.

Formal Methods for Industrial Applications: Spec-

ifying and Programming the Steam Boiler Control,
volume 1165 of Lecture Notes in Computer Science.
Springer-Verlag, 1996.

[2] J. Bicarregui, J. Dick, and E. Woods. Supporting
the length of formal development: From diagrams to



VDM to B to C. In H. Habrias, editor, Z Twenty

Years on { What is its Future?, pages 63{75, Uni-
versit�e de Nantes, France, 1995. IRIN (Institut de
Recherche en Informatique de Nantes).

[3] J. P. Bowen. Formal methods in safety-critical stan-
dards. In Proc. 1993 Software Engineering Standards

Symposium, pages 168{177. IEEE Computer Society
Press, 1993.

[4] J. P. Bowen, R. W. Butler, D. L. Dill, R. L. Glass,
D. Gries, J. A. Hall, M. G. Hinchey, C. M. Holloway,
D. Jackson, C. B. Jones, M. J. Lutz, D. L. Parnas,
J. Rushby, H. Saiedian, J. Wing, and P. Zave. An invi-
tation to formal methods. IEEE Computer, 29(4):16{
30, April 1996.

[5] J. P. Bowen and M. G. Hinchey. Formal methods and
safety-critical standards. IEEE Computer, 27(8):68{
71, August 1994.

[6] J. P. Bowen and M. G. Hinchey. Seven more myths of
formal methods. IEEE Software, 12(4):34{41, 1995.

[7] J. P. Bowen and M. G. Hinchey. Ten commandments
of formal methods. IEEE Computer, 28(4):56{63,
April 1995.

[8] J. P. Bowen, M. G. Hinchey, and D. Till, editors. ZUM
'97: The Z Formal Speci�cation Notation, 10th In-

ternational Conference of Z Users, Reading, UK, 3{4

April 1997, Proceedings, volume 1212 of Lecture Notes
in Computer Science. Springer-Verlag, 1997.

[9] J. P. Bowen and V. Stavridou. Safety-critical systems,
formal methods and standards. IEE/BCS Software

Engineering Journal, 8(4):189{209, July 1993.

[10] D. Craigen, S. L. Gerhart, and T. J. Ralston. An in-
ternational survey of industrial applications of formal
methods. Technical Report NIST GCR 93/626-V1 &
2, Atomic Energy Control Board of Canada, US Na-
tional Institute of Standards and Technology, and US
Naval Research Laboratories, 1993.

[11] D. Craigen, S. L. Gerhart, and T. J. Ralston. Formal
methods reality check: Industrial usage. IEEE Trans-

actions on Software Engineering, 21(2):90{98, 1995.

[12] N. Dean. The Essence of Discrete Mathematics. The
Essence of Computing Series. Prentice Hall, 1997.

[13] D. Garlan. Integrating formal methods into a pro-
fessional master of software engineering program. In
J. P. Bowen and J. A. Hall, editors, Z User Workshop,

Cambridge 1994, Workshops in Computing, pages 71{
85. Springer-Verlag, 1994.

[14] S. L. Gerhart, D. Craigen, and T. J. Ralston. Expe-
rience with formal methods in critical systems. IEEE
Software, 11(1):21{28, January 1994.

[15] J. A. Hall. Seven myths of formal methods. IEEE

Software, 7(5):11{19, September 1990.

[16] J. A. Hall. Using formal methods to develop an
ATC information system. IEEE Software, 13(2):66{
76, March 1996.

[17] J. A. Hall, D. L. Parnas, N. Plat, J. Rushby, and C. T.
Sennett. The future of industrial formal methods. In
J. P. Bowen and M. G. Hinchey, editors, ZUM '95:

The Z Formal Speci�cation Notation, volume 967 of
Lecture Notes in Computer Science, pages 238{242.
Springer-Verlag, 1995.

[18] C. Heitmeyer. Formal methods: A panacea or aca-
demic poppycock? In Bowen et al. [8], pages 3{9.

[19] M. G. Hinchey and J. P. Bowen, editors. Applications
of Formal Methods. Prentice Hall International Series
in Computer Science, 1995.

[20] M. G. Hinchey and J. P. Bowen, editors. Industrial-

Strength Formal Methods. International Series in For-
mal Methods. Academic Press, 1997. In preparation.

[21] J. Jacky. Specifying a safety-critical control system
in Z. IEEE Transactions on Software Engineering,
21(2):99{106, 1995.

[22] J. Jacky. The Way of Z: Practical Programming with

Formal Methods. Cambridge University Press, 1997.

[23] C. Lewerentz and T. Lindner, editors. Formal Devel-
opment of Reactive Systems: Case Study Production

Cell, volume 891 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, 1995.

[24] Luqi and J. A. Goguen. Formal methods: Promises
and problems. IEEE Software, 14(1):73{85, January
1997.

[25] K. Kumar M. D. Faser and V. K. Vaishnavi. Strate-
gies for incorporating formal speci�cations in soft-
ware development. Communications of the ACM,
37(10):74{86, October 1994.

[26] D. MacKenzie. Computers, formal proof, and the law
courts. Notices of the American Mathematical Society,
39(9):1066{1069, November 1992.

[27] RAISE Language Group. The RAISE Speci�cation

Language. BCS Practitioner Series. Prentice Hall In-
ternational, 1992.

[28] M. Saaltink. The Z/EVES system. In Bowen et al.
[8], pages 72{85.

[29] K. J. Turner, editor. Using Formal Description Tech-

niques: An Introduction to Estelle, LOTOS and SDL.
John Wiley & Sons, 1993.

[30] D. Weber-Wul�. Selling formal methods to industry.
In J. C. P. Woodcock and P. G. Larsen, editors, FME

'93: Industrial-Strength Formal Methods, volume 670
of Lecture Notes in Computer Science, pages 671{678.
Formal Methods Europe, Springer-Verlag, 1993.

[31] L. A. Winsborrow and D. J. Pavey. Assuring cor-
rectness in a safety critical software application. High
Integrity Systems, 1(5), 1996.


