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ABSTRACT
Continuous alterations and extensions of a software system
introduce so called god classes, accumulating ever more
responsibilities. As god classes make essential steps in
program comprehension harder, it is expected that effec-
tive and efficient techniques to resolve them will facilitate
future maintenance tasks.

This work reports on a laboratory experiment with 63
computer science students, in which we verified whether
the decomposition of a god class using well-known refac-
torings can affect comprehensibility of the relevant code
part. Five alternative god class decompositions were de-
rived through application of refactorings, by which the re-
sponsibilities of a natural god class were increasingly split
into a number of collaborating classes.

Our results indicate that the derived class decompo-
sitions differed significantly with regard to the ability of
students to map attributes in the class hierarchy to descrip-
tions of the problem domain. Moreover, this effect has been
found to interact with the institution in which the partici-
pants were enrolled, confirming that comprehensibility is
a subjective notion for which we have to take into account
people’s skills and expectations.

This work indicates that improving comprehensibil-
ity is within the grasp of a single maintainer preparing for
future change requests by redistributing the responsibilities
of a god class using well-known refactorings.
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1 Introduction

Class decomposition is one of the key activities in object-
oriented software development. It is applied in the refine-
ment from object-oriented analysis to design, by which en-
tities and operations recognized in the problem domain are
split up or merged into classes and relationships between
them [1]. Furthermore, the incorporation of ever chang-
ing – and often unanticipated – requirements into the ini-
tial design requires frequent reconsideration of the class de-
composition, lest the software system loses its economical
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value in a highly competitive environment.

Many books have been published on the creation and
evaluation of class decompositions. Thecreationof a class
decomposition is supported by modeling techniques (e.g.
nouns/verbs decomposition [2, 3], and the use of Class-
Responsibility-Collaborator cards [4]), modeling notations
(mostly UML [5]) and patterns (such as Design Patterns
[6, 7] and Analysis Patterns [8]). Itsevaluationon the other
hand, is supported by quality models (e.g. ISO 9126-3 [9]),
quality guidelines [10, 1, 11], design heuristics [12] and
anti-patterns [13].

Despite the manifold works regarding class decompo-
sition, its relationship with external quality characteristics
has hardly been studied. To the best of our knowledge,
there is only one empirical study regarding the relation-
ship of class decomposition with external quality attributes.
In their work, [14] demonstrate maintainability differences
between two alternative Java designs illustrating either a
centralized or delegated control style. Their results suggest
that novice developers had more problems understanding
a delegated control style, indicating that comprehensibil-
ity is a subjective notion which should take into account
the methods of organization preferred by the people main-
taining the system. In other words, working towards the
objective notion of optimal comprehensibility will result in
class decompositions which are suboptimal for the individ-
ual maintainers.

We exploit the subjective nature of comprehensibility
by addressing it on the scale of a single maintainer prepar-
ing for future maintenance tasks. Accordingly, we ask our-
selves whether refactoring a single, yet vital part of a soft-
ware system using a small number of refactorings can result
in improved comprehensibility.

To answer this question, we redistributed the respon-
sibilities of a single natural god class to a number of collab-
orating classes using small and well-known refactorings.
This restructuring was performed in a number of steps,
each resulting in a different class decomposition. Sub-
sequently, the comprehensibility of these decompositions
was assessed by observing master-level computer science
students perform a controlled enhancive maintenance task.
This work reports on the verification of comprehensibility
differences among the alternative class decompositions.

The paper is organized as follows. We demarcate



comprehensibility within the context of this work in sec-
tion 2. The concept of class decomposition is introduced in
section 3. Section 4 illustrates the experimental set-up, of
which the collected data is analyzed in section 5 and dis-
cussed in section 6. The threats to validity are analyzed in
section 7. Finally, we provide references to related work in
section 8 and conclude in section 9.

2 Comprehensibility

Program comprehension can be defined as the recogni-
tion of the overall program function, an understanding
of intermediate-level processes including program organi-
zation, and comprehension of the purpose of each state-
ment [15]. This definition accentuates its multidimensional
character, making it virtually impossible to construct a
complete test for comprehensibility of a software system.
Therefore, any reference to comprehensibility should be
accompanied with a clear specification of the scope of com-
prehension.

In this work, we focus on comprehensibility of the
program organization. More specifically, we are interested
in the structural organization of data and proceduresre-
ferred to in the problem domain description. In an object-
oriented context, data is organized into attributes, and pro-
cedures are organized into methods consisting of algorith-
mic steps. As stated by [16],the task of understanding a
program for a programmer is one of constructing, or re-
constructing, enough information about the modeling do-
mains that bridge between problem and executing program
to perform the requested tasks.Therefore, we demarcate
comprehensibility as the ability to map attributes and steps
in the execution of a method to descriptions of the problem
domain.

3 God Class Decomposition

The object-oriented paradigm introduced the encapsulation
of related procedures and data into conceptual groupings
called object classes. One of the undoubted benefits of en-
capsulation is that it allows to control the extent to which
changes to attributes and behavior of object classes propa-
gate through the system.

However, the resulting decomposition of the prob-
lem domain into a set of collaborating classes leads to a
more subtle distinction between procedures and data. At
the system level, one can identifycontrollers which ex-
hibit more methods and less data, andentities, exhibit-
ing more data and less methods [2]. This distinction is
promoted in design patterns such as the Entity-Boundary-
Controller pattern [2], the Model-View-Controller pattern
[17], the Presentation-Abstraction-Controller pattern [18]
and the Use-Case controller pattern [3]. While the con-
cept of a controller originally envisioned the handling of
input interactions, today’s controllers resemble workflow

engines more closely by governing the flow of control as-
sociated with a complete user task.

As one of the most agreed upon bad practices, the so
called god classanti-pattern [12] tends to tangle aspects
of both controllers and entities. Its occurrence within nu-
merous software systems can be explained by the way that
god classes are formed. God classes are not designed, they
are grown. Ever changing requirements cause continuous
alteration and extension of a software system. The high
rate of source code adaptations tends to introduce design
flaws such as misplaced responsibilities. Ultimately, some
classes take the form of black holes, accumulating and at-
tracting ever more responsibilities. These god classes are
considered to be the main targets for reorganization, and
the preferred approach to resolve them is to extract both
behavioral and data classes, clarifying the distinction be-
tween procedures and data [19].

To exemplify the refactoring of a god class, we illus-
trate a classical reengineering scenario.

3.1 Illustrative Refactoring Scenario

Consider the problem domain in which the following pro-
cedure for filtering incoming mails into appropriate mail-
boxes applies:

1. Collect the mailheaders of all mails awaiting filtering.

2. Collect the filters to be applied.

3. Apply each filter on all mails awaiting filtering.

(a) Evaluate the headerfield-values of the current
mail.

(b) Move the mail to the target mailbox in case of a
match.

4. Move unfiltered mails to the inbox.

A common – yet bad practice – class decomposition
for fulfilling the filtering procedure is:

Decomposition A – The software design consists of a sin-
gle class. This god class governs the flow of control
and manages the internal representation of domain en-
tities.

The responsibilities of the god class can be incremen-
tally redistributed either to collaborating classes – if present
– or to new classes that are pulled out of the god class.
To ensure behavioral equivalence of the resulting class de-
compositions, behavior preserving transformations called
refactoringsare applied [20].

Decomposition B – Two filter classes are extracted from
the god class: one for filtering according to the equal-
ity of a header field with a given string, and one ac-
cording to the mere presence of a string in a header
field. This extraction of two controller classes is done



using the refactoringReplace Method with Method
Objecton the two filtering methods from the original
god class (step 3).

Decomposition C – The vector in which the mail header
field values are stored (step 1) is extracted and en-
capsulated in a mail header entity class. Using dif-
ferent terminology, this class would be categorized as
an entity, model, or abstraction class. The transforma-
tion used is similar to theIntroduce Parameter Object
refactoring.

A benefit of factoring out the controllers is that they
deal with fewer issues. A benefit of factoring out the enti-
ties is that it provides a clear and encapsulated representa-
tion of a domain entity.

The refactoring scenario from decomposition A to C
would be considered an adequate disentangling of the ini-
tial god class. Nonetheless, to anticipate future needs of
reusability and flexibility, the extraction of controller and
entity classes might continue.

Decomposition D – The action which is to be applied by a
filter (step 3b) is extracted in a filter action class. This
delegation to a new controller class required the ap-
plication of theExtract MethodandReplace Method
with Method Objectrefactorings.

Decomposition E – The representation of a mail header
field as consisting of a key and value pair (step 3a)
is extracted and encapsulated in a header field class.
Once again, the extraction of this entity class is done
using a refactoring similar toIntroduce Parameter Ob-
ject.

As the newly introduced controller and entity classes
in respectively decomposition D and E bear little respon-
sibilities, their weight in the overall class hierarchy is very
small. These steps might be considered over-engineering.
Yet, as numerous cases of over-engineering can be found in
practice, these refactoring steps are quite realistic.

Because the god class decompositions were derived
by applying behavior-preserving refactorings, they only
differ w.r.t. their internal organization. Qualitative differ-
ences between them – e.g.. their comprehensibility – are
consequently solely due to their organizational differences.

4 Experimental Set-Up

As indicators of comprehensibility, we rely on the accuracy
and execution time of a task requiring comprehension of
both the data and procedural organization.

It is important to note that in comparisons of accuracy
and execution time measurements, one must bear in mind
that increased accuracy can be compensated by longer ex-
ecution time and reversely. Accordingly, we clearly distin-
guish the following research questions:

1. Do some decompositions allow to achieve higher
comprehension accuracy than others?

2. Do some decompositions allow to achieve compre-
hension faster than others?

4.1 Experimental Design

The experiment was designed to use both randomization
and a pretest.

Subjects are randomly assigned to one of five groups
(A to E). Each group applies two change localization tasks.
The first task is identically applied by all groups, and pro-
vides pretest observations . The second task , however, is
applied for each group on a different class decomposition,
and providesposttestobservations , incorporating manipu-
lation of the experimental factor under study.

Differences between posttest observations are at-
tributable to a) characteristics of the class decompositions
(A–E); b) characteristics of individual performance (par-
tially described by the pretest observations); and c) the in-
teraction between the characteristics of a decomposition
and individual performance. For example, the effect of
class decomposition on task performance might differ be-
tween high and low performant participants.

4.2 Software System

The software system used in the experiment is an open
source Java mail client (Yamm v0.9.1), which consists of
13KLOC over 66 classes. In order to prepare the assign-
ments, we moved the god class responsible for the filter-
ing procedure to a separate package, thereby forming de-
composition A. The total number of non-comment, non-
whitespace lines of code of decomposition A was 276,
which is a commonly used order in comprehension exper-
iments [21]. By keeping all extracted classes in this pack-
age, we had a means to clearly bound the part of source
code which was of interest for the assignments.

Incrementally, the god class was refactored in order
to extract both controller and entity classes, resulting in de-
compositions B to E.

This software system was chosen for the following
reasons. It has been shown that differences w.r.t. the expe-
rience with the application domain has an influence on con-
ceptual modeling effort [22, 23, 24]. By assuring that the
application domain was well known by all participants, this
effect was neutralized. As a second argument, the system
is a typical example of continual extension, which leads
naturally to the fostering of god classes. The god class re-
sponsible for the filtering procedure is therefore a natural
and realistic god class.

4.3 Experimental Assignments

The assignments were chosen to be quite small and sim-
ple, which allows us to focus more on comprehension ef-



fort than on the degree of accuracy which can be achieved.
For practical reasons, the assignments were to be solvable
in an average time frame of half an hour.

The pre- and posttest assignments (respectively illus-
trated in Figures 1 and 2) were chosen to be similar tasks to
be applied on different source parts. Therefore, during the
pretest, participants could normally not have gained com-
prehension of the code related to the posttest.

All assignments were provided under the form of
a Change Request, which specifies its scope, provides
a description of the associated scenario from the user-
perspective, illustrates the semantics of domain concepts
(e.g. examples of mail headerfields) and dictates the
changes to be applied by the participant.

Figure 1 displays the pretest assignment, and requires
the localization of two information items which are to be
printed to standard output at a specific algorithmic step.

Output the header-fields (name and value) of a mail to stan-
dard output at the moment it is being sent. Use the follow-
ing output format as an example:

To: <emailaddress of addressee(s)>
Subject: <subject of the mail>
---
... (next output block)

Figure 1. Pretest assignment

The assignments stimulate the following comprehen-
sion activities:

• Map attributes to concepts described in the problem
domain.E.g. localize the attribute representing the To
header field.

• Map steps in the execution of methods to actions de-
scribed in the problem domain.As the flow of control
passes through the procedural organization, different
steps in the execution of methods can match an action
as the sending of a mail. E.g. one could print infor-
mation immediately before or after delegating control.
The limited visibility of attributes implies that not all
attributes can be printed at the same step in execution.

The posttest assignment is illustrated in Figure 2.
It requires the localization of 8 information items, to be
printed at the algorithmic step corresponding to 3b in the
filtering procedure presented in section 3.

4.4 Experimental Variables

4.4.1 Independent Variables

• IV1: Class Decomposition.This ordinal variable in-
dicates the number of classes which were extracted
from the god class to derive the class decomposition.
Therefore, the possible values are{A,B,C,D,E}.

Output the header-fields (name and value) and the proper-
ties of the applied filter to standard output at the moment
a mail is being filtered. Use the following output format as
an example:

From=<from header-field value>
To=<to header-field value>
Subject=<subject header-field value>
Reply-To=<reply-to header-field value>
Filtered Header Field Name=<one out of

{from,to,subject,reply}>
Filtering Method=<one out of
{equals,contains}>
Filtering String=<string of which the
presence in a header-field value triggers
the application of the filter>
Moved Mail To=<indication of the mailbox
to which the mail is to be moved when
filtering, e.g.. boxes/trash>
---
... (next output block)

Figure 2. Posttest assignment

• IV2: Institution. The experiment was replicated with
students enrolled in different institutions (see Table
1), providing a nominal variable. Possible values are
{MAS1,MAS2,MAS3}. This variable is incorporated
as curriculum differences are a potential cause of vari-
ation, and can thereby provide an explanation for dif-
ferences in individual performance.

4.4.2 Dependent Variables

In observing the execution of a change request in which
attributes and particular steps in program execution have to
be localized, we distinguish between:

• PLA: Percentage of Localized Attributes.Measured
as the percentage of attributes that are localized by a
participant and match with the requested domain con-
cepts. The total number of attributes to be localized is
two for the pretest and eight for the posttest.

• PLAS: Percentage of Localized Algorithmic Steps.
Measured as the percentage of requested information
items for which a correct step in execution was found
– even if the wrong attribute is printed.

• ET: Execution Time.Measured as the time frame be-
tween the point at which the change request is read
and the point at which the task is finished, in seconds.

4.5 Hypotheses

We operationalize our research questions into the following
null hypotheses:



H0,PLA The number of localized relevant attributes (PLA)
does not differ w.r.t. the class decomposition.

H0,PLA−ET The time required to localize all relevant at-
tributes does not differ w.r.t the class decomposition.

H0,PLAS The number of localized relevant algorithmic
steps (PLAS) does not differ w.r.t. the class decom-
position.

H0,PLAS−ET The time required to localize all relevant al-
gorithmic steps does not differ w.r.t the class decom-
position.

It is clear that the rejection of H0,PLA and/or
H0,PLAS would answer research question 1 positively, and
similarly for hypotheses H0,PLA−ET and/or H0,PLAS−ET

and research question 2.
As an exploratory study, we specify the significance

criterion atα=0.10.

4.6 Experimental Subjects

The same set-up was applied in five replications, employ-
ing a total of sixty-three master-level computer science stu-
dents (see Table 1).

As the names of the institutions are of no value within
the context of this paper, we have encoded them.

Table 1. Replications of the experiment.

Rep Institution Curriculum #Subjects
1 MAS1 CS 9
2 MAS1 CS 5
3 MAS2 ICT 20
4 MAS3 CS 14
5 MAS3 Cs 15

Total 63

1–2 In October 2004, fourteen third year mathematics and
computer science (CS) students (four years master-
level) participated in the context of a crash-course on
the open source Integrated Development Environment
Eclipse. This course is optional in the third year of the
four years master level (mathematics and) computer
science curricula at the University of X, Belgium. An
experimental session was organized for 9 computer
science and 5 mathematics and computer science stu-
dents separately. As third year students, they are mod-
erately experienced in object-oriented software devel-
opment in Oberon and C++. However, these students
have no experience with maintenance.

3 In November 2004, twenty last year students in-
dustrial engineering in ICT-electronics (four years

master-level) participated in the context of a manda-
tory course on distributed software in Java at the Uni-
versity of Y, Belgium. These students have limited
experience with object-oriented software development
in C++ and Java.

4–5 In March 2005, twenty-nine last year computer sci-
ence students (four years master-level) participated in
the context of a mandatory course on software evo-
lution at the University of Z, Belgium. As last year
students, they are experienced in object-oriented soft-
ware development in Scheme and Java. These stu-
dents previously extended an existing system in a
project assignment and therefore have minor experi-
ence with the tasks at hand.

The University of Y is a university of professional
education (hogeschoolin Dutch), contrary to the univer-
sities of X and Z who provide research-oriented education.
Before the Bachelor-Master reformation in Europe, profes-
sional education led to the bachelor level while research-
oriented education led to the master level.

There is a clear distinction between the curricula of
MAS1 and MAS3 students (computer science) and the ICT-
electronics curriculum of the MAS2 students. The latter
are less focused on software engineering and mostly tar-
get hardware and network design as well as datacommu-
nication. While it is not uncommon for people with an
ICT-electronics profile to be responsible for development
and maintenance in the software engineering industry, we
might expect that their different education with regard to
software engineering principles had an influence on pre-
ferred class decompositions.

4.7 Experimental Procedure

Subjects were randomly assigned to treatments, in which
each of the class decompositions represents a different
treatment. Due to the practical setup, subjects were aware
that they participated in an experiment. However, the pur-
pose of the experiment was not discussed.

To reduce differences in experimental procedure over
the experimental replications, subjects were referred to the
task assignment sheets as much as possible. As no dia-
grams were provided, the only source of information to
comprehend the data and procedural organization was the
source code which could be browsed using the Integrated
Development Environment Eclipse (version 2.1.3).

Timestamps after reading and finishing the assign-
ment allowed to calculate the task duration. As the par-
ticipants were required to extensively use the Concurrent
Versioning System (CVS) support, we were able to verify
the correctness of the handwritten timestamps, thereby pro-
viding the measurement of the dependent variable ET.

The pre- and posttest were performed sequentially,
both delimited at one hour. After the experimental session,
the CVS repository was harvested to collect the solution



of each participant (as well as the path to this solution).
This allowed the measurement of the dependent variables
PLA and PLAS. As these accuracy ratings were performed
by the first author, this can be regarded as an opportunity
for experimental bias. However, the evaluation technique
was clear and objective, as there is only a single correct
outcome for the localization of an attribute or algorithmic
step.

5 Data Analysis

In this section, we report the analysis of the data by which
we want to answer our two research questions. Firstly, do
some decompositions allow to achieve higher comprehen-
sion accuracy than others? Secondly, do some decomposi-
tions allow to achieve comprehension faster than others?

5.1 Descriptive Statistics

Both pretest and posttest observations of PLA were skewed
significantly to the high end of the scale, and exhibit a clear
peak. The pretest observations of PLAS demonstrated sim-
ilar deviations from normality. Its associated posttest ob-
servations exhibit a flat distribution. While both pretest and
posttest observations of ET were indicated to conform to
the normal distribution, this was not the case for PLA and
PLAS. Therefore, we must rely on non-parametric tests for
comparing accuracy observations.

Table 2. Descriptive statistics for the observations on the
posttest (N=63)

pretest posttest
measure mean stdDev. mean stdDev.

PLA 96.0% 16.3% 86.2% 21.4%
PLAS 93.6% 19.0% 41.2% 43.4%

ET 1284 535 2471 799

The data described in Table 2 suggests that most of
the participants had no problems localizing attributes and
algorithmic steps for the pretest. During the posttest, most
of the participants were able to localize a large part of the
attributes.

However, most participants were unable to localize
the correct algorithmic steps. Moreover, within the same
experimental groups, the individual differences in the abil-
ity to localize algorithmic steps in the posttest were large.
This finding could only be observed in the possttest ob-
servations of PLAS, and persisted even within groups of
participants from the same institution comprehending the
same god class decomposition. Such variation decreases
the sensitivity of tests for differences between different ex-
perimental groups. The associated lack of power causes us
to remain inconclusive about the effect of god class decom-
position on comprehensibility of the procedural organiza-

tion (H0,PLAS and H0,PLAS−ET ). We therefore refrain
from elaborating on statistical tests concerning the PLAS
observations.

Participants performed worse on the posttest, as the
information items were less related. E.g. the posttest as-
signment requires the localization of information about the
mailheader, the filter and the action to be applied by the
filter.

Table 3 displays the probability (p-value) that indi-
vidual performance differences between participants were
already present at pretest (and posttest) time. In this ex-
periment we reject a null hypothesis on the condition that
this probability less then or equal to 10% (α=.10). These
values indicate no significant performance differences be-
tween the experimental groups working on the different
class decompositions (A–E). Performance differences be-
tween participants from different institutions are plausible
(p=.144), but this effect is under experimental control due
to the rigorous procedure of randomization across experi-
mental groups.

Table 3. Significance of the Kruskal-Wallis test statistic
w.r.t. the PLA observations

factor pretest posttest

decomposition .445 .089*
institution .144 .353
interaction .213 .078*

5.2 Do some decompositions allow to achieve
higher comprehension accuracy than
others?

Table 3 also evaluates whether there were significant per-
formance differences between experimental groups during
the posttest. The significant main effect of class decom-
position regarding PLA indicates that the ability of partici-
pants to localize attributes differed significantly among the
five god class decompositions derived through refactoring
(p=.089). Moreover, this effect interacts significantly with
the institution, indicating that participants from some insti-
tutions had more difficulties localizing attributes in a par-
ticular class decomposition than participants from other in-
stitutions (p=.078).

Figure 3 presents the mean value of PLA posttest ob-
servations per combination of the decomposition and in-
stitution factors. The line referred to in the legend as
Overall illustrates that the ability of participants to local-
ize attributes differed significantly among the different god
class decompositions. Moreover, the results of the insti-
tutions differ with regard to the class decomposition at
which the ability of participants to localize attributes was
highest, as indicated by the different trends across differ-
ent institutions. The results of the replications with com-
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Figure 3. Mean Percentage of Localized Attributes (PLA)
posttest observations

puter science students (MAS1 and MAS3) demonstrate ab-
solute differences between class decompositions of more
than 30 PLA. This means that for some decompositions,
participants were able to localize an additional one third
of the attributes in relation to other decompositions. Ob-
served PLA differences between class decompositions of
the ICT-electronics students (MAS2) were smaller, differ-
ing at most 15 PLA.

Summarizing, these observations allow us to reject
H0,PLA. Therefore, we can state that some decompositions
allow to achieve higher accuracy than others with regard to
comprehensibility of the data organization.

5.3 Do some decompositions allow to achieve
comprehension faster than others?

To answer this question, we restrict our analysis to
only those observations which localized all attributes
(PLA=100), of which the frequency over class decompo-
sitions is illustrated in Figures 4.

An ANOVA model with factors decomposition, in-
stitution and their interaction was composed (α=.10,
R2=.463, Adj. R2=.136). Table 4 provides the significance
of the ANOVA test statistic, demonstrating neither the main
nor the interaction effects of factors decomposition and in-
stitution factor to be significant.

Table 4. Significance of the ANOVA test statistic w.r.t. the
execution time of posttest observations with PLA=100

factor p-value power

decomposition .106 .683
institution .265 .396
interaction .893 .260

Figure 5 confirms that the mean ET of different insti-
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Figure 4. Frequency of observations with PLA=100

tutions follows the same trend across decompositions. Dif-
ferences between the time it took participants to localize all
attributes reach up to 16 minutes between decompositions
D and E, compared to an overall mean ET of 37 minutes.
While the probability that differences of this order is low
(p=.106), our significance criterion does not allow to clas-
sify these as significant.
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Figure 5. Mean ET of observations with PLA=100

Summarizing, we must accept H0,PLA−ET . Accord-
ingly, we cannot state that some decompositions allow to
achieve comprehension of the data organization faster than
others.

6 Discussion of Results

After analyzing the collected data we are able to reflect
upon the two research questions.

Do some decompositions allow to achieve higher
comprehension accuracy than others? Yes, our data



demonstrates that participants were able to localize signifi-
cantly more relevant attributes for certain god class decom-
positions. However, our data does not suggest an objective
notion of ”optimal comprehensibility”. On the contrary,
while the computer science students had more difficulties
comprehending the original god class decomposition A,
ICT-electronics students experienced less difficulties. It ap-
pears that differences in comprehensibility of the god class
decompositions as perceived by the computer science stu-
dents were larger than as evaluated by the ICT-electronics
students. We interpret this finding as a confirmation that
advanced object-oriented software engineering training can
induce a preference towards particular styles of class de-
composition.

However, we were unable to evaluate differences
w.r.t. the ability to comprehend the procedural organiza-
tion . The variation within experimental groups is known
ascommon cause variation, and indicates an effect of un-
known factors. In other words, participants within the same
groups applied different strategies for localizing the rele-
vant steps in the execution. In future work, we plan to per-
form an extensive post-analysis to identify these different
strategies.

Do some decompositions allow to achieve comprehen-
sion faster than others? We did observe differences be-
tween the god class decompositions concerning the time
it took participants to localize all attributes. The statisti-
cal significance of these differences approximated the pre-
set significance criterion (p=.106). Curiously, while the
class decomposition for which students demonstrated op-
timal comprehensibility differed between institutions (in-
teraction effect), such an interaction could not be observed
w.r.t. the time it took to localize all attributes. When we
would regard those students being able to localize all at-
tributes as performant students, this finding could suggest
that there are few systematical differences w.r.t. class de-
composition preference between the selection of perfor-
mant students across different institutions.

7 Threats to Validity

There are severe limitations to the extent at which our re-
sults can be attributed to the specified cause, and the extent
in which these results can be generalized. For clarity, we
specify the main threats to validity.

7.1 Internal Validity

Internal validity is the degree to which the experimental
setup allows to accurately attribute an observation to a spe-
cific cause rather than alternative causes. The threats we
have identified are the following.

• Maturation might have affected participant perfor-
mance due to the application of a pretest. However,

randomized assignments of participants to groups
should ensure that this effect does not lead to system-
atic group differences.

• The risk of an instrumentation effect was minimized
through the use of a decidedly objective and clear
comparison of the participant’s result with the unique
correct result.

7.2 External Validity

External validity is the degree to which research results can
be generalized outside the experimental setting or to the
population under study.

• Characteristics of the problem domain at hand and
the associated experimental tasks are that the concepts
used were very simple, and familiar to all participants.
Therefore, it is unclear whether systematic differences
w.r.t. comprehensibility arise when the problem do-
main is more complex in terms of the number of enti-
ties, relationships, and their properties.

• The experiment reported in this work was performed
in a laboratory setting with computer science students.
Consistency of the observed effect over different insti-
tutions suggest that our findings can be generalized to
the population of computer science students in gen-
eral. However, a common characteristic of this popu-
lation is their perspective on optimal decompositions,
as most of the books providing examples are consid-
ered standard reading material. Therefore, it is un-
clear whether the observed effect would reoccur in
case professional software maintainers would be used,
as their experience with alternative decompositions
might have stimulated a comprehension process that
is more robust to variability in class decompositions.

8 Related Work

[14] compare differences between two alternative Java de-
signs that had a centralized and delegated control style re-
spectively. It is hard to clearly differentiate between these
two styles in our alternative designs, as both controller and
entity classes were extracted. The extraction of a controller
class introduces delegated control, and extracting an entity
class introduces centralized control. Following this argu-
ment, our design A clearly represents a centralized control
style, designs B and D introduce more delegation, and de-
signs C and E introduce centralization.

Regarding comprehensibility of the data organization,
our results confirm the conclusions of [14], which state
that novice developers had more problems understanding
a delegated control style. Our data indicates a significant
interaction effect between the decomposition and the in-
stitution factors. On average, our ICT-electronics partic-
ipants achieved higher comprehension accuracy than the



computer science participants for design A, but lower ac-
curacy for designs C, D and E (see Figures 3 and 4). The
execution time – for those observations with perfect com-
prehension accuracy – did not indicate a significant inter-
action effect, however.

[25] performed research on a so called Psychological
Complexity Measure, which uses information on class re-
sponsibilities and class collaborations to calculate the psy-
chological development complexity as a measure of ef-
fort. By defining a measure called Permitted Collabora-
tions (PC), they suggest a means for estimating the cogni-
tive load imposed on the developers of a software system
from a set of Class-Responsibility-Collaborator cards [4]
that represent a domain. One of the purposes of this mea-
sure is to ”aid the developers in selecting the right class
decomposition when there are conflicting choices”. When
considering each algorithmic step a separate responsibil-
ity, the PC measure confirms the empirical findings in this
paper, indicating a decreasing complexity from decompo-
sition A over B to decomposition C and an increasing com-
plexity from decomposition C over D to decomposition E.

9 Conclusion

This experiment has been set up to verify whether god class
decomposition can facilitate comprehension.As one of
the indicators of comprehensibility, the ability to map at-
tributes in the class hierarchy with domain concepts was
significantly affected by the decomposition and its inter-
action with the institution from which the participant was
enrolled. Moreover, this increased accuracy was not com-
pensated by longer execution times of the comprehension
task.

Our findings lead to two conclusions:

1. Improving comprehensibility is within the grasp of a
single programmer or maintainer preparing for future
change requests, as demonstrated using our illustrative
refactoring scenario. This approach is in contrast with
the more traditional perspective on the need for mas-
sive reengineering efforts for attaining improvements
in external quality characteristics. Small scale refac-
toring during development can therefore be regarded
as a complementary strategy to a separate preventive
maintenance phase, differing both in required invest-
ments and resulting returns.

2. We are reluctant to accept the concept ofan optimal
class decompositionwith respect to comprehensibil-
ity, since one of the factors which interacts with the
class decomposition is the particular education of the
subject performing the comprehension task. This ob-
servation has been previously demonstrated by [14],
and suggests that guidelines for the reorganization of
software systems should take into account the partic-
ular skills and expectations of the people maintaining
the system. To be more precise, it is important to ei-
ther adjust the organization of the software system to

the methods of organization preferred by the people
maintaining it, or to make these people accustomed to
these methods of organization, e.g. by training.

This work does not provide guidelines on how to im-
prove comprehensibility using refactorings. However, our
conclusions can motivate software engineering researchers,
practitioners and tool developers to study and support ways
in which comprehensibility improvements can be achieved
using controlled refactorings.
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