
Discussion on the Results of the Detection of Design Defects

Naouel Moha
Yann-Gaël Guéhéneuc

GEODES - Group of Open and Distributed
Systems, Experimental Software Engineering

Department of Informatics and Operations Research
University of Montreal, Quebec, Canada

Laurence Duchien
Anne-Françoise Le Meur

Adam Team – INRIA
Laboratoire d’informatique

fondamentale de Lille
Université de Lille, France

E-mail: {mohanaou,guehene}@iro.umontreal.ca and {duchien,lemeur}@lifl.fr

Abstract

Software engineers often need to identify in their
systems “poor” design choices—design defects—that
hinder the development and maintenance, as op-
portunities of improvements and as a measure of
the quality of their systems. However, the detection
of design defects is difficult because of the lack of
specifications and tools. We propose DECOR, a
method to specify design defects systematically and to
generate automatically detection algorithms. With this
method, software engineers analyse and specify design
defects at a high-level of abstraction using a unified
vocabulary and a dedicated language for generating
detection algorithms. To illustrate our method, in
this paper, we specify 4 well-known design defects,
the antipatterns Blob, Functional Decomposition,
Spaghetti Code, and Swiss Army Knife and their 15
underlying code smells and we generate automatically
their detection algorithms. We apply and validate the
detection algorithms in terms of precision and recall
and discuss the precision of these algorithms on 11
open-source object-oriented systems.

Keywords: Software Defects, Design Defects, An-
tipatterns, Detection, Correction, Object-Oriented Ar-
chitecture.

1 Introduction

Quality is an important goal in the software devel-
opment process because software are everywhere from
game applications to life support systems. Quality is
assessed and improved mainly during formal technical
reviews, which primary objective is to detect errors or

defects early, before they are passed on to another soft-
ware engineering activity or released to the customer
[11]. Quality is especially important during mainte-
nance, which is one of the most difficult and expen-
sive activities of the software development process [11]
because bad design practices and architectural drift
[10] are the root causes of design defects, which make
adding, debugging, and evolving features difficult.

We define design defects as bad solutions to re-
curring problems in object-oriented designs, typically
UML class diagrams, similarly to design patterns [5].
They encompass problems at different levels of gran-
ularity, ranging from architectural and design prob-
lems, such as antipatterns [1] to low-level or local prob-
lems, such as code smells [3], which are usually symp-
toms of more global design defects. Design defects are
at a higher-level than Halstead or Fenton’s “defects”,
which are “deviations from specifications or expecta-
tions which might lead to failures in operation” [2][7].
We focus on the design defects described in Fowler’s
and Brown’s books [1 ; 3].

An example of design defects is the Spaghetti Code
antipattern1, which is characteristic of procedural
thinking in object-oriented programming. Spaghetti
Code is revealed by classes with no structure, declar-
ing long methods with no parameters. The names of
the classes and methods may suggest procedural pro-
gramming. Spaghetti Code does not exploit and pre-
vents the use of object-orientation mechanisms, such
as polymorphism and inheritance.

The detection of design defects and their correction
early in the development process substantially reduce
the cost of subsequent activities of the development
and support phases [11] because designs free of defects

1This defect, as the ones presented later on, is really in be-
tween design and implementation.

1

are easier to implement, change, and maintain. How-
ever, detection in large designs is a highly time- and
resource-consuming and error-prone activity [13] be-
cause design defects crosscut classes and methods and
their descriptions are subject to misinterpretation.

We propose the DECOR method (Defect dEtection
for CORrection) to specify and to detect design de-
fects systematically2. This method builds on and gen-
eralises previous work and our own experience in a uni-
fied method and understanding. It is a major improve-
ment of our previous work [8 ; 12]. It consists of 7 steps,
from the analysis of the textual descriptions of design
defects through their reification to their detection.

The originality of the method stems from the choice
of defining a domain-specific language: Central to the
method is the first language to specify design defects at
a high-level of abstraction using the key concepts found
in their textual descriptions, not in the underlying ad-
hoc modelling or detection frameworks as in previous
work. Moreover, this language leads to the definition
of the first meta-model to describe design defects and
to generate automatically detection algorithms. The
language is built from an in-depth analysis of the do-
main related to design defects to identify key concepts,
such as metrics, structural relationships, and lexical
and structural properties.

The language is then used to generate automatically
detection algorithms for the specified design defects.
A thorough validation of the generated detection al-
gorithms shows the precision and recall [4] of the al-
gorithms, which supports the consistency and the pre-
cision of the specifications and the usefulness of the
DECOR method for software engineers during techni-
cal reviews and maintenance. It is the first time such
an extensive validation is performed to assess detection
algorithms for design defects.

This paper aims only to present the validation
of our method with the specification and detection
of 4 design defects: Blob, Functional Decomposi-
tion, and Swiss Army Knife, on 11 object-oriented
systems: ArgoUML, Azureus, GanttProject,
Log4J, Lucene, Nutch, PMD, QuickUML, and
two versions of Xerces, plus Eclipse. It discusses
also the results, concludes, and presents future work.

2 Results

We validate our method by studying both the ap-
plication of the 7 steps and the results of the detec-
tion. We use reverse-engineered designs in our vali-
dation because industrial designs are seldom available

2Correction is out of the scope of this paper, thus we focus
on the part of the DECOR method related to detection.

freely. Also, design documents, as documentation in
general, are often out-of-date. Thus, in many systems
with poor documentation, the source code is the only
reliable source of information [9].

First, we compute the precision and recall of the re-
sults of our method using data obtained independently.
This is the first available report of the precision and re-
call of the algorithms to detect design defects. Thus, we
recast our work in the domain of information retrieval
and used the measures of precision and recall, where
precision assesses the number of true defects identified,
while recall assesses the number of true defects missed
by the algorithms with the following definitions [4]:

precision =
|{existing defects} ∩ {detected defects}|

|{detected defects}|

recall =
|{existing defects} ∩ {detected defects}|

|{existing defects}|
We enlisted the help of independent software en-

gineers to compute the recall of the generated algo-
rithms. The validation is performed manually because
only software engineers can assess whether a suspicious
class is indeed a defect or a false positive, depending
on the rule card and the context and characteristics of
the system. This step may be time consuming if the
specifications of the design defects are not constraining
enough.

Second, we specify and detect design defects in sev-
eral object-oriented systems and report the numbers of
suspicious classes and the precisions and computation
times of the algorithms.

2.1 Assumptions of the Validation

This experimental data allows to test 3 assumptions
supporting the usefulness of our method.

1. The language allows to describe several design de-
fects. This hypothesis supports the applicability
of our method on 4 design defects, composed of 15
code smells, and the consistency of the specifica-
tions.

2. The generated detection algorithms have a recall of
100%, i.e., all known design defects are detected,
and an average precision greater than 33%, i.e.,
the detection algorithms report less than 2/3 of
false positives with respect to the number of true
positives. This hypothesis supports the precision
of the rule cards and the adequacy of the algorithm
generation. It also supports the services provided
by our framework.

2

3. The complexity of the generated algorithms is rea-
sonable, i.e., have computation times under few
minutes. This hypothesis supports the precision of
the generated algorithms and the adequacy of the
SAD framework to describe and to analyse pro-
gram designs.

2.2 Subjects of the Validation

We use our method to describe 4 well-known but
different antipatterns from Brown’s book [1]: Blob,
Functional Decomposition, Spaghetti Code, and Swiss
Army Knife. Table ?? summarises each of these design
defects. These design defects include in their specifi-
cations 15 different code smells described, partly de-
scribed in Fowler’s book [3]. We generate associated
detection algorithms automatically.

2.3 Objects of the Validation

The objects of our validation are the reverse-
engineered designs of 10 open-source Java systems:
ArgoUML, Azureus, GanttProject, Log4J,
Lucene, Nutch, PMD, QuickUML, and two ver-
sions of Xerces. In contrast with previous work, we
use freely available systems to ease comparisons and
replications of our validation. We provide some infor-
mation on these systems in Table 1. We also apply the
algorithms on Eclipse and discuss the results.

Name Version
Lines Number of Number of

of Code Classes Interfaces
ArgoUML 0.19.8 113,017 1,230 67

An extensive UML modelling tool
Azureus 2.3.0.6 191,963 1,449 546
A peer-to-peer client implementing the BitTorrent protocol

GanttProject 1.10.2 21,267 188 41
A project-management tool to plan projects with Gantt charts

Log4J 1.2.1 10,224 189 14
A logging Java package

Lucene 1.4 10,614 154 14
A full-featured text-search Java engine

Nutch 0.7.1 19,123 207 40
An open-source web search engine, based on Lucene

PMD 1.8 41,554 423 23
A Java source code analyser for identifying low-level problems
QuickUML 2001 9,210 142 13
A simple UML class and sequence diagrams modelling tool
Xerces 1.0.1 27,903 189 107

A framework for building XML parsers in Java
Xerces 2.7.0 71,217 513 162

Release of March 2006 of the Xerces XML parser

Table 1. List of Systems.

2.4 Results of the Validation

We report the times of detections and the number
of suspicious classes. Manual code inspections were

performed by three master students and independent
software engineers to compute the precision and recall
of the suspicious classes.

Table 2 presents the precision and recall of the de-
tection of the four design defects in Xerces v2.7.0. We
ask several independent software engineers to analyse
manually this system using only Brown and Fowler’s
books and their own understanding to identify design
defects. Each time a doubt on a candidate class arose,
they considered the books as references in deciding
by consensus whether or not this class was actually
a design defect. They performed a thorough study of
Xerces and produced a XML file containing suspicious
classes for the 4 design defects. Few design defects may
have been missed by mistake due to the nature of the
task. We ask other software engineers to perform this
same task again on Xerces to confirm the findings
and on other systems to increase our database in fu-
ture work.

The recalls of our detection algorithms are 100% for
each design defect. Precisions are between 41.07% to
more than 80%, providing between 5.65% and 14.81%
of the total number of classes, which is reasonable for
a software engineer to analyse by hand, with respect to
analysing the entire system—513 classes—manually.

Table 3 provides the numbers of suspicious classes,
first line of each row, the numbers of true defects, sec-
ond lines, the precisions, third lines, and the compu-
tation times, fourth lines, for the 9 other systems plus
Xerces v2.7.0. We only report precisions, recalls are
part of the future work because of the required time-
consuming manual analyses by independent software
engineers.

We perform all computations on a Intel Dual Core at
1.67GHz with 1Gb of RAM. Computation times do not
include building the models of the program designs but
include accesses to compute metrics and to check struc-
tural relationships and lexical and structural proper-
ties.

We verify each of the 3 assumptions using the results
of the validation to assess the usefulness of our method.

1. The language allows to describe several design de-
fects. We described 4 different design defects of the
inter- and intra-class categories and of the struc-
tural, lexical, and measurable categories which are
characterised by code smells also belonging to dif-
ferent categories. Thus, we show that we can de-
scribe different kinds of defects, which supports
the generality of our method.

2. The generated detection algorithms have a recall of
100% and an average precision greater than 33%.
Table 2 shows that the precision and recall for

3

Design Defects Number Numbers of Numbers of Precision Recall Timeof Classes True Positives Detected Defects
Blob

513

39 (7.60%) 44 (8.58%) 88.64% 100.00% 2.45s
Functional Decomposition 15 (2.92%) 29 (5.65%) 51.72% 100.00% 0.91s
Spaghetti Code 46 (8.97%) 76 (14.81%) 60.53% 100.00% 0.23s
Swiss Army Knife 23 (4.48%) 56 (10.91%) 41.07% 100.00% 0.08s

Table 2. Precision and Recall in Xerces v2.7.0. (In parenthesis, the percentage of classes affected by a
design defect.)

A
r
g
o
U

M
L

A
z
u
r
e
u
s

G
a
n
t
t
P
r
o
je

c
t

L
o
g
4
J

L
u
c
e
n
e

N
u
t
c
h

P
M

D

Q
u
ic

k
U

M
L

X
e
r
c
e
s
v
1
.0

.1

X
e
r
c
e
s
v
2
.7

.0

A
v
e
ra

g
e

P
re

c
is

io
n

B
lo

b

29 (2.36%) 41 (2.83%) 10 (5.32%) 3 (1.59%) 3 (1.95%) 6 (2.90%) 4 (0.95%) 0 (0%) 10 (5.29%) 44 (8.58%)
25 (2.03%) 38 (2.62%) 9 (4.79%) 3 (1.59%) 2 (1.29%) 4 (1.93%) 4 (0.95%) 0 (0%) 10 (5.29%) 39 (7.60%)

86.21% 92.68% 90.00% 100% 66.67% 66.67% 100% 100% 100% 88.64% 89.09%
3.01s 6.41s 2.44 1.34s 1.84s 3.56s 3.87s 0.45s 2.75s 2.45s

F
.D

. 37 (3.01%) 44 (3.04%) 15 (7.98%) 11 (5.82%) 1 (0.65%) 15 (7.25%) 13 (3.07%) 10 (7.04%) 4 (2.12%) 29 (5.65%)
22 (1.79%) 17 (1.17%) 4 (2.12%) 6 (3.17%) 0 (0.00%) 3 (1.45%) 4 (0.95%) 3 (2.11%) 4 (2.12%) 15 (2.92%)

59.46% 38.64% 26.67% 54.55% 0% 20.00% 30.77% 30.00% 100.00% 51.72% 41.18%
0.42s 0.47s 0.80s 0.05s 0.03s 0.05s 0.06s 0.02s 0.03s 0.16s

S
.C

. 44 (3.58%) 153 (15.56%) 14 (7.45%) 3 (1.59%) 8 (5.19%) 26 (12.56%) 9 (2.13%) 5 (3.52%) 25 (13.23%) 76 (14.81%)
38 (3.09%) 125 (8.62%) 10 (5.32%) 2 (1.06%) 6 (3.89%) 22 (10.63%) 5 (1.18%) 0 (0.00%) 23 (12.17%) 46 (8.97%)

86.36% 81.70% 71.43% 66.67% 75.00% 84.61% 55.56% 0% 92.00% 60.53% 67.39%
0.26 2.86s 0.20 0.08s 0.09s 0.11s 0.06s 0.03s 0.11s 0.22s

S
.A

.K
. 108 (8.78%) 145 (10.00%) 8 (4.25%) 51 (26.98%) 9 (5.84%) 33 (15.94%) 13 (3.07%) 6 (4.22%) 12 (6.35%) 56 (10.91%)

18 (1.46%) 33 (2.27%) 3 (1.59%) 33 (17.46%) 1 (0.65%) 13 (6.28%) 6 (1.42%) 1 (0.70%) 5 (2.65%) 23 (4.48%)
16.67% 22.76% 37.50% 64.70% 11.11% 39.39% 46.15% 16.67% 41.67% 41.07% 33.77%

0.28s 0.13s 0.05s 0.02s 0.02s 0.02s 0.02s 0.02s 0.03s 0.05s

Table 3. Results of Applying the Detection Algorithms. (In each row, the first line is the number of
suspicious classes, the second line is the number of classes being design defects, the third line is the precision,
and the fourth line shows the computation time. Numbers in parenthesis are the percentages of the classes
being reported. (F.D. = Functional Decomposition, S.C. = Spaghetti Code, and S.A.K. = Swiss Army Knife))

Xerces v2.7.0 fulfill our hypothesis with preci-
sions greater than 40% and a recall of 100%. Ta-
ble 3 present the precisions for the other 9 systems,
which also comply with our hypothesis, with av-
erage precisions above 33%, thus validating the
usefulness of our method.

3. The complexity of the generated algorithms is rea-
sonable, i.e., have computation times under few
minutes. Computations times are in general be-
low few seconds because the complexity of our de-
tection algorithms depends only on the number
of classes in the analysed system, n, and on the
number of properties to verify on each class. The
complexity of the generated detection algorithms
is (c + op)×O(n), where c is the number of prop-
erties and op the number of operators.

2.5 Discussions of the Results

The computation times of the design defects vary
with the design defects and the systems. During valida-
tion, we notice that building the models of the program
designs accounted for the major part of the computa-
tion times, while the detection algorithms have small
execution times, which explains the only slight differ-
ences between each system, in a same line in Table
3, and the differences between each design defect, in
different columns. The computation times for PADL
models is not surprising, because the models contain
extensive data on a system, including binary class re-
lationships [6] and accessors.

The number of detected suspicious classes vary with
the design defect and the system because the systems
have been developed in different contexts and may have
unequal quality. Systems such as PMD or QuickUML
may be of better quality than Azureus or Xerces,
thus leading to greater numbers of suspicious classes
being actually defects.

4

The precisions also vary in function of the design
defect and of the system, as shown in Table 3. This
variation has two reasons. First, the specifications of
the design defects as rule cards can be over- or under-
constraining. For example, the rule cards of the Blob
and Spaghetti Code design defects specify the defects
restrictively using metrics and structural relationships,
leading to a low number of suspicious classes and high
precisions. On the contrary, the rule cards of the Func-
tional Decomposition and Swiss Army Knife design de-
fects specify these defects loosely, using lexical data,
leading to lower precisions. We could now refine the
specifications of the defects and improve their preci-
sions by iterating over the different steps of the method
systematically.

The reader could argue that the number of false pos-
itives is quite high. However, in these experiments, we
obtain false positives because our objective was 100%
recall for all programs. Yet, thanks to the systematic
method and the language, the rules can be refined and
modified systematically to fit the specific contexts of
the analyzed systems and, thus, increase precision if
desired (possibly at the expense of recall because pre-
cision and recall are a trade-off).

We also apply our detection algorithms on the
Eclipse open source development platform to demon-
strate its scalability. Eclipse v3.1.2 weighs 2,538,774
lines of code for 9,099 classes and 1,850 interfaces. It
is one order of magnitude larger than the largest of
the open-source systems, Azureus. The detection of
the 4 design defects in Eclipse requires more time
and produce more results. We detect 848, 608, 436,
and 520 suspicious classes for the Blob, Functional De-
composition, Spaghetti Code, and Swiss Army Knife
design defects, respectively. The detections take about
1h20m for each defect, with about 1 hour to build the
model. The use of the detection algorithms on Eclipse
shows the scalability of our algorithms. It also high-
lights the problem of balance between numbers of sus-
picious classes and precisions. In addition, it shows the
importance of specifying design defects in the context
of the system in which they are detected. Indeed, the
large number of suspicious classes for the Blob design
defect in Eclipse, about 1/10th of the overall number
of classes, may come from design and implementation
choices and constraints within the Eclipse commu-
nity and thus does not necessarily reflect design defects.
With our method, software engineers can re-specify de-
sign defects easily to fit their environment.

2.6 Illustrations of the Results

We present examples of the four design defects suc-
cinctly. In Xerces v2.7.0, method matchCharArray
(Context,Op,int,int,int) of the org.apache.
xerces.impl.xpath.regex.RegularExpression
class is a typical example of Spaghetti Code. A good
example of the Blob design defect is the com.aelitis.
azureus.core.dht.control.impl.DHTControlImpl
class in Azureus. This class declares 54 fields and
80 methods for 2,965 lines of code. An interesting
example of the Functional Decomposition design defect
is class org.argouml.uml.cognitive.critics.Init
of ArgoUML, in particular because the name of
the class suggests a functional decomposition. Class
org.apache.xerces.impl.dtd.DTDGrammar is a
striking example of Swiss Army Knife in Xerces,
implementing 4 different sets of services with 71 fields
and 93 methods for 1,146 lines of code.

2.7 Threats to Validity

A threat to the validity of the validation is the ex-
clusive use of open-source Java systems. It is possible
that the open-source development process biases the
numbers of design defects, especially in case of mature
systems such as PMD v1.8 or Xerces v2.7.0. It is
also possible that the Java programming language af-
fects design choices and thus design defects. However,
we applied our algorithms on systems of various size
and quality to void the possibility for all systems to
be either well or badly implemented. Moreover, we
chose to perform a validation on open source systems
to allow comparisons and replications. We are also
in contact with companies to replicate this validation
on their commercial systems. We contacted develop-
ers involved in each of the systems of the validation to
compute recalls. So far, we received few answers but
with enthusiastic interest. Software engineers analysed
independently our results for Log4J, Lucene, PMD,
and QuickUML, and confirmed the results in Table
3. We gratefully thank M. Adamovic, C. Alphonce,
D. Cutting, T. Copeland, P. Gardner, E. Ross, and Y.
Shapira for their kind help. We are in the process of
increasing the size of our library of known design de-
fects thanks to their kind help. In addition, we believe
important to report the results of the detection to the
communities developing the systems.

3 Conclusion

The detection of design defects is important to im-
prove the quality of software systems, to ease their evo-

5

lution, and thus to reduce the overall cost of software
development. However, the manual detection of design
defects is tedious and time-consuming.

In previous works [8 ; 12], we presented a systematic
method, DECOR, that covers the complete process of
specifying design defects, generating automatically de-
tection algorithms, and detecting design defects.

In this paper, we presented a validation of the
DECOR method using 4 design defects (Blob, Func-
tional Decomposition, Spaghetti Code, Swiss Army
Knife) and their detections in 10 reverse-engineered
designs from open-source systems (ArgoUML,
Azureus, GanttProject, Log4J, Lucene,
Nutch, PMD, QuickUML, and two versions of
Xerces). We reported the precisions and recalls of
the detection algorithms for Xerces v2.7.0 and the
precisions for the other systems. We showed that
the detection algorithms are reasonably efficient and
precise and have a good recall. We concluded on the
usefulness of our method. We also applied our detec-
tion algorithms on Eclipse v3.1.2, demonstrating its
scalability and highlighting the problem of balance
among numbers of suspicious classes, precisions, and
development context.

We are currently in contact with software engineers
working on various open-source and industrial systems
to apply and further validate our method. We are also
contacting other communities to report the results of
our detection algorithms, to compute the precisions
and recalls of the results, and to improve our speci-
fications of the design defects. Other future work in-
clude: using existing tools to improve the implemen-
tation of our method; studying key concepts with for-
mal concept analysis; improving the quality and per-
formance of the source code of the generated detection
algorithms; computing the recall on other systems; ap-
plying our method to other kinds of defects; perform-
ing formal usability tests; comparing quantitatively our
method with previous work. As regards this last point,
we are currently conducting a study on defect detection
tools including several tools such as RevJava, Find-
Bugs, PMD, Hammurapi, or Lint4j to assess our tool
against existing tools while a first comparison is avail-
able in the Related Work.

References

[1] William J. Brown, Raphael C. Malveau, William H.
Brown, Hays W. McCormick III, and Thomas J. Mow-
bray. Anti Patterns: Refactoring Software, Architec-
tures, and Projects in Crisis. John Wiley and Sons,
1st edition, March 1998. isbn: 0-471-19713-0.

[2] Norman E. Fenton and Martin Neil. A critique of soft-
ware defect prediction models. Software Engineering,
25(5):675–689, 1999.

[3] Martin Fowler. Refactoring – Improving the Design of
Existing Code. Addison-Wesley, 1st edition, June 1999.
isbn: 0-201-48567-2.

[4] W. B. Frakes and R. Baeza-Yates. Information Re-
trieval: Data Structures and Algorithms. Prentice-
Hall, 1992.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley,
1st edition, 1994. isbn: 0-201-63361-2.

[6] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recov-
ering binary class relationships: Putting icing on the
UML cake. In Doug C. Schmidt, editor, Proceedings of
the 19th conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 301–314.
ACM Press, October 2004.

[7] Maurice H. Halstead. Elements of Software Science
(Operating and programming systems series). Else-
vier Science Inc., New York, NY, USA, 1977. isbn:
0444002057.

[8] Naouel Moha, Duc-Loc Huynh et Yann-Gá’el
Guéhéneuc. Une taxonomie et un métamodèle pour la
détection des défauts de conception. Roger Rousseau,
éditeur, actes du 12e colloque Langages et Modèles à
Objets, pages 201–216. Hermès Science Publications,
March 2006.

[9] Hausi A. Muller, Jens H. Jahnke, Dennis B. Smith,
Margaret-Anne D. Storey, Scott R. Tilley, and Kenny
Wong. Reverse engineering: a roadmap. In ICSE —
Future of SE Track, pages 47–60, 2000.

[10] Dewayne E. Perry and Alexander L. Wolf. Founda-
tions for the study of software architecture. In Pe-
ter G. Neumann, editor, Software Engineering Notes,
17(4):40–52. ACM Press, October 1992.

[11] Roger S. Pressman. Software Engineering – A Prac-
titioner’s Approach. McGraw-Hill Higher Education,
5th edition, November 2001. isbn: 0-07-249668-1.

[12] Naouel Moha, Yann-Gaël Guéhéneuc, and Pierre
Leduc. Automatic generation of detection algorithms
for design defects. In Sebastian Uchitel and Steve East-
erbrook, editors, Proceedings of the 21st conference on
Automated Software Engineering. IEEE Computer So-
ciety Press, September 2006. Short paper.

[13] Guilherme Travassos, Forrest Shull, Michael Freder-
icks, and Victor R. Basili. Detecting defects in object-
oriented designs: using reading techniques to increase
software quality. In proceedings of the 14th confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 47–56. ACM Press,
1999.

6

