
Session 3

High level dynamic analysis views

Bas Cornelissen, Delft Univ. of Technology



Combining Reverse Engineering 
Techniques for Product Lines

Dharmalingam Ganesan, Isabel John and Jens Knodel



Motivation

• Migration towards product lines
– “Recover and reconstruct” strategy

• Approach
– Identify and prioritize relevant assets
– Combine reverse engineering techniques to recover 

these assets
– Visualization

• Hierarchical graphs
• Message sequence charts



Combining techniques

• Information sources: code, documentation 
and running system



Document analysis

• CaVE method
– FAQs, tutorials, user guides, designer documentation

• Extraction
Concepts, features, use cases, relationships

• Conceptual architectural view



Static analysis

• SAVE method
– Compare as-intended architecture with as-is 

architecture
– Use conceptual model as starting point
– Obtain source model by parsing the code
– Reduce no. of lowlevel components
– Iterate until initial model and source model are aligned



Dynamic analysis

• Extraction of behavioral views



Final words

• Systematical reconstruction
– Recovery of assets for use in product lines
– Combination of techniques covers multiple grounds

• Effort?
• Other visualizations?
• Scalability?





Higher Abstractions for Dynamic 
Analysis

Marcus Denker, Orla Greevy and Michele Lanza



Motivation

• Dynamic analysis
– Code instrumentation & registration of runtime behavior
– Requires detailed knowledge of target language



Reinventing the wheel

• Multiple implementations for instrumentation
– Too much effort



Non-flexible solutions

• Tight coupling between tool and environment
– Alternate VM requires reimplementation



Proposition

• New abstraction layer
– Based on behavorial reflection



Behavioral reflection

• Allows a program to modify (at runtime):
– its own code
– the semantics and implementation of its own 

programming language

• Complete dynamic analysis
– Comprises more than just method executions
– Need for a reflective meta representation that 

describes all behavorial aspects



Behavioral framework

• Additional abstraction layer



Requirements

• Runtime installation
• Unanticipated use
• Fine-grained selection
• Implementation hiding
• Performance



Final words

• Generic abstraction layer
– Allows for portable tools
– Relieves developers of lowlevel detail concerns

• Several requirements
– Can these be realized?



Discussion

• Feasible?

• How does this abstraction layer compare 
to Aspect Oriented Programming?





Capturing How Objects Flow at 
Runtime

Adrian Lienhard, Stephane Ducasse, Tudor 
Girba and Oscar Nierstrasz



Motivation

• Dynamic techniques are generally based 
on trace views
– Too low level of abstraction for OO systems

• Idea: capture object lifecycles
– Take aliasing into account
– Follow propagation of objects at runtime
– Meta model



Aliases

• Created when an object is:
– instantiated
– stored in a field
– stored in a local variable
– passed as an argument
– returned from a method execution



Relating static to dynamic 
information

• Serves two purposes
– Check whether objects paths are as expected
– Identification of important classes in the object flow



Characterizing object flows

• Purpose
– Shows an object’s interaction with other objects 

during its lifecycle



Object-centric debugging

• Purpose
– Support in finding causes and effects of errors



Conclusion

• Need for views on object referencing
– Alias analysis yields promising results
– Serves various purposes



Discussion

• Scalability
– Performance overhead: factor 10
– Implement aliases at a lower level in the VM
– Room for improvement?
– Scalable object visualizations?


	Session 3��High level dynamic analysis views
	Combining Reverse Engineering Techniques for Product Lines
	Motivation
	Combining techniques
	Document analysis
	Static analysis
	Dynamic analysis
	Final words
	Higher Abstractions for Dynamic Analysis
	Motivation
	Reinventing the wheel
	Non-flexible solutions
	Proposition
	Behavioral reflection
	Behavioral framework
	Requirements
	Final words
	Discussion
	Capturing How Objects Flow at Runtime
	Motivation
	Aliases
	Relating static to dynamic information
	Characterizing object flows
	Object-centric debugging
	Conclusion
	Discussion

