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Combining Reverse Engineering 
Techniques for Product Lines

Dharmalingam Ganesan, Isabel John and Jens Knodel



Motivation

• Migration towards product lines
– “Recover and reconstruct” strategy

• Approach
– Identify and prioritize relevant assets
– Combine reverse engineering techniques to recover 

these assets
– Visualization

• Hierarchical graphs
• Message sequence charts



Combining techniques

• Information sources: code, documentation 
and running system



Document analysis

• CaVE method
– FAQs, tutorials, user guides, designer documentation

• Extraction
Concepts, features, use cases, relationships

• Conceptual architectural view



Static analysis

• SAVE method
– Compare as-intended architecture with as-is 

architecture
– Use conceptual model as starting point
– Obtain source model by parsing the code
– Reduce no. of lowlevel components
– Iterate until initial model and source model are aligned



Dynamic analysis

• Extraction of behavioral views



Final words

• Systematical reconstruction
– Recovery of assets for use in product lines
– Combination of techniques covers multiple grounds

• Effort?
• Other visualizations?
• Scalability?





Higher Abstractions for Dynamic 
Analysis

Marcus Denker, Orla Greevy and Michele Lanza



Motivation

• Dynamic analysis
– Code instrumentation & registration of runtime behavior
– Requires detailed knowledge of target language



Reinventing the wheel

• Multiple implementations for instrumentation
– Too much effort



Non-flexible solutions

• Tight coupling between tool and environment
– Alternate VM requires reimplementation



Proposition

• New abstraction layer
– Based on behavorial reflection



Behavioral reflection

• Allows a program to modify (at runtime):
– its own code
– the semantics and implementation of its own 

programming language

• Complete dynamic analysis
– Comprises more than just method executions
– Need for a reflective meta representation that 

describes all behavorial aspects



Behavioral framework

• Additional abstraction layer



Requirements

• Runtime installation
• Unanticipated use
• Fine-grained selection
• Implementation hiding
• Performance



Final words

• Generic abstraction layer
– Allows for portable tools
– Relieves developers of lowlevel detail concerns

• Several requirements
– Can these be realized?



Discussion

• Feasible?

• How does this abstraction layer compare 
to Aspect Oriented Programming?





Capturing How Objects Flow at 
Runtime

Adrian Lienhard, Stephane Ducasse, Tudor 
Girba and Oscar Nierstrasz



Motivation

• Dynamic techniques are generally based 
on trace views
– Too low level of abstraction for OO systems

• Idea: capture object lifecycles
– Take aliasing into account
– Follow propagation of objects at runtime
– Meta model



Aliases

• Created when an object is:
– instantiated
– stored in a field
– stored in a local variable
– passed as an argument
– returned from a method execution



Relating static to dynamic 
information

• Serves two purposes
– Check whether objects paths are as expected
– Identification of important classes in the object flow



Characterizing object flows

• Purpose
– Shows an object’s interaction with other objects 

during its lifecycle



Object-centric debugging

• Purpose
– Support in finding causes and effects of errors



Conclusion

• Need for views on object referencing
– Alias analysis yields promising results
– Serves various purposes



Discussion

• Scalability
– Performance overhead: factor 10
– Implement aliases at a lower level in the VM
– Room for improvement?
– Scalable object visualizations?
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